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Abstract. Sample return missions offer opportunities to learn things about other objects in our
Solar System (and beyond) that cannot be determined by observations using in situ spacecraft.
This is largely because the returned samples can be studied in terrestrial laboratories where
the analyses are not limited by the constraints - power, mass, time, precision, etc. - imposed
by normal spacecraft operations. In addition, the returned samples serve as a scientific resource
that is available far into the future; the study of the samples can continue long after the original
spacecraft mission is finished. This means the samples can be continually revisited as both our
scientific understanding and analytical techniques improve with time.

These advantages come with some additional difficulties, however. In particular, sample return
missions must deal with the additional difficulties of proximity operations near the objects they
are to sample, and they must be capable of successfully making a round trip between the Earth
and the sampled object. Such missions therefore need to take special precautions against unique
hazards and be designed to successfully complete relatively extended mission durations.

Despite these difficulties, several recent missions have managed to successfully complete sam-
ple returns from a number of Solar System objects. These include the Stardust mission (samples
from Comet 81P/Wild 2), the Hayabusa mission (samples from asteroid 25143 Itokawa), and the
Genesis mission (samples of solar wind). This paper will review the advantages and difficulties of
sample return missions in general and will summarize some key findings of the recent Stardust
and Hayabusa missions.
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1. Introduction
Spacecraft are now ‘routinely’ used to study a host of astrophysical objects within our

Solar System and beyond. The majority of these missions are designed to study their sub-
jects remotely (space telescopes) or in situ (spacecraft sent to various destinations within
the Solar System), and their use has revolutionized our understanding of space. These
missions do, however, suffer from a number of limitations, particularly when it comes to
determination of the detailed compositional nature of the objects studied. Sample return
missions offer a means of augmenting the study of the composition of extraterrestrial
objects in unprecedented detail.

The planetary sciences have long benefited from the availability of free sample returns
that arrive at the Earth in the form of meteorites and cosmic dust and these materials
have provided the context of much of what we know about the formation and evolution
of our Solar System. However, these samples generally arrive at the Earth as ‘orphans’
whose original parent bodies are unknown. Under these conditions we lack the context
needed to fully take advantage of the samples. Sample return missions can provide the
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material for study along with contextual information gathered from the known parent
body.

Sample return began with samples returned from the Moon (Heiken et al. 1991) and
these samples have amply demonstrated the advantages of sample return. These samples
have now been available for over 40 years and continue to be the focus of active research.
Subsequent to the lunar sample returns there was little in the way of sample return from
space for many years, and what sample return there was did little to provide the parent
body context of a focused sample return mission. For example, samples of extraterrestrial
materials have been returned from space on exposed impact surfaces (i.e. Zolensky &
Kinard 1993), but these samples were similar to collected meteorites and stratospheric
dust in the sense that the samples’ parent bodies were unknown.

However, in recent years there have been a handful of missions that have flown and
successfully returned to Earth with samples of targeted objects. These include the Genesis
mission, which returned samples of solar wind, the Stardust mission, which returned dust
samples from the coma of Comet 81P/Wild 2, and the Hayabusa mission, which retuned
dust particles from the surface of asteroid 25143 Itokawa. All three of these missions
have demonstrated the scientific value of sample return missions. In the discussions that
follow, a general review of the advantages and difficulties associated with sample return
missions will be presented. In addition, a number of specific examples of how sample
return missions have proven their worth will be presented. These examples will focus
on sample return from small, primitive Solar System objects, i.e. on the Stardust and
Hayabusa missions. For further information about the Genesis mission, the reader is
invited to see Burnett et al. (2003). Finally, the discussion will provide some summary
comments concerning important lessons learned from these missions that are specific to
sample return before ending with a brief look to what is on the horizon for future sample
return missions for small Solar System bodies.

2. Advantages of Sample Return
There are numerous advantages to sample return for the study and understanding

of our Solar System, particularly when it comes to the determination of compositions.
Having actual extraterrestrial samples on hand in terrestrial laboratories allows for the
use of state-of-the-art analytical techniques and equipment, providing for the ultimate
in current precision, sensitivity, resolution, and reliability. In contrast, spacecraft instru-
ments making in situ measurements are, of necessity, not state-of-the-art since they fly
instrument designs that must be locked into place well before launch and frequently
have extended flights to their targets. In fact, sample return missions have the advantage
that they are a resource for both current and future studies. As laboratory analytical
techniques improve, samples can always be reexamined to take advantage of these im-
provements.

Sample return missions also avoid limitations associated with cost, power, mass, and
reliability that are imposed on spacecraft instruments. Spacecraft are limited on what
they can carry and this constrains the measurements they can make. In contrast, samples
returned to the Earth’s surface can be studied using any analytical technique one cares
to bring to bear, vastly increasing the information that can be gleaned from the parent
body. It is interesting to note that some of the terrestrial analytical devices used to
study Stardust and Hayabusa samples are not only more massive than the spacecraft
that returned them, they are more massive than the launch pads from which they left
the Earth’s surface!
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The study of returned samples also enjoys the benefit that the samples can be studied
by a broad international community that can use many different analytical techniques in
an iterative and fully adaptive fashion. The work of these scientists need not be limited
by instrument designs or ideas current at the time of the launch of the original spacecraft.
Also, since the samples reside in terrestrial laboratories and can be made available to
multiple researchers, analyses can be made using multiple, fully calibrated techniques and
instruments, and verified by multiple researchers. Finally, because the actual analyses
are done on Earth, sample return takes advantage of a tremendous resource not fully
available to non-return missions, namely the expertise of the world’s analytical chemists,
physicists, and meteoriticists.

3. Special Difficulties of Sample Return
Of course, sample return missions also must deal with some special difficulties that do

not exist, or are less problematic, for other missions. One principal additional difficulty
that must be accommodated by sample return missions is that they must make round
trips. Most in situ space missions arrive at their destination, do their work, and are
then more-or-less abandoned when their tasks are completed. In contrast, sample return
mission must not only launch, travel to their collection site, and collect a sample, but
must also return to the Earth and deliver the sample safely to the surface. These issues
add complications to the spacecraft’s design that are associated with the sample reentry
system and can make for longer mission lifetimes that place greater demands on the
reliability of spacecraft systems.

Of course, one unique need that all sample return missions will share is the availabil-
ity of a suitable sample collection system. The details and associated difficulties of such
collection systems will vary from mission to mission and are strongly dependent on the
nature of the body from which the sample is being collected, the type of sample desired,
and so on. However, all such systems will share a number of common requirements. Chief
among these is the need to collect, preserve, and deliver the sample with a minimum
amount of alteration or contamination. Most spacecraft missions go to some pains to en-
sure they launch a ‘clean’ spacecraft to minimize risk to spacecraft operations and data
taken by onboard instrumentation. Sample return missions generally share these same
concerns, but have the added need to ensure the collected samples remain as pristine as is
practically possible from the time of their collection to their ultimate analysis in a terres-
trial laboratory. This requires that special care be taken in the design, assembly, testing,
and flight of the spacecraft to mitigate contamination of the collected samples. In reality,
it is generally not possible to guarantee a perfectly contamination-free environments.
Thus, it is necessary for sample return missions to also make a special effort to not only
carry out contamination control processes, but to also do contamination assessment. In
this manner, contamination that can be eliminated is removed, and contamination that
cannot is at least identified and characterized so that it will not be confused with parent
body materials during analysis after sample return. Such assessments need to be made
at all stages of the mission from manufacture of the spacecraft to ultimate removal of
the sample from the sample return system.

While not always the case (Genesis is an example of an exceptions), sample return
missions usually require the spacecraft operate in near proximity to the parent body from
which the sample is to be collected. This can greatly complicate spacecraft operations and
generally results in risks that are not associated with missions that have larger ‘stand-off’
distances.
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Finally, sample return missions are, of course, most powerful when they are equipped
with many of the same sorts of in situ analytical instruments associated with one-way,
non-sample return missions. Such instrumentation (imagers, spectrometer, etc.) benefit
sample return missions in both practical and scientific ways. Scientifically, such measure-
ments can greatly increase the value of the returned samples by providing context from
their parent body, as well as yielding results in their own right. On a more practical
note, such instrumentation can also provide a means of establishing what are the best
possible sampling sites, how representative these sampling sites are of the entire body,
and so on. While the additional instruments add complexity to the overall spacecraft,
they generally do not raise concerns beyond those normal for non-return missions (with
the exception that one needs to ensure that these instruments will not be a source of
sample contamination and will work properly in the near-body sampling environment).

4. The Stardust Comet Sample Return Mission
4.1. Overview of the Stardust Mission

Stardust, a NASA Discovery class mission, was the first spacecraft in history to return
solid samples from an astronomical body beyond the Earth-Moon system (Brownlee et al.
2003; Brownlee et al. 2004; Brownlee et al. 2006). The mission retrieved samples from
Comet 81P/Wild 2, an ∼4.5 km-diameter body that was presumably formed and spent
most of the past 4.5 or so billion years in the Kuiper Belt. This comet was somehow
perturbed from its original orbit and on 10 September 1974 it had a close encounter
with Jupiter that placed it in its current orbit, which lies between Mars and Jupiter.
In its current orbit, the comet has an expected dynamical lifetime of ∼104 years before
it hits a larger object or is ejected from the Solar System (Levison & Duncan 1997).
Comet 81P/Wild 2 now approaches the Sun close enough that solar heating causes classic
cometary activity near perihelion.

During the Stardust flyby on 2 January 2004, the comet was active, and images showed
the presence of at least 20 dust jets coming from the nucleus (Brownlee et al. 2004;
Sekanina et al. 2004) (Fig. 1). Stardust approached to within 234 km of the surface of
Wild 2, when the comet was at a solar distance of 1.86 AU. Particles were collected
from the comet’s coma when they impacted at the 6.12 km/sec encounter velocity into
low-density silica aerogel (Tsou et al. 2003; Brownlee et al. 2003; Brownlee et al. 2006).
The collecting aerogel consisted of a porous glass comprised of nanometer-sized silica
filaments with bulk density that varied from <0.01 g/cm3 at the impact surface to 0.05
g/cm3 at 3-cm depth (Tsou et al. 2003). The aerogel’s composition was predominantly
SiO2, but contaminants, including some C-bearing components (largely -CH3 and -CH2-
groups) were also present (Sandford et al. 2010). Stardust aerogel tiles collected over a
thousand 5-300 µm (and many more smaller) comet particles. Onboard impact sensors
indicate that most of the collected particles were associated with just a few specific dust
jets (Tuzzolino et al. 2004). Particles ejected from the comet were exposed to space for
only a few hours before collection, but solar heating was probably sufficient to vaporize
most ices during transit from Wild 2 to the Stardust spacecraft. The collected materials
were successfully delivered to Earth’s surface by the Stardust Sample Return Capsule on
15 January 2006 (Brownlee et al. 2006), which was subsequently opened in a specially
designed cleanroom at the NASA Curatorial Facility at Johnson Space Center.

Particle impacts into the aerogel produced a variety of differently shaped tracks.
Non-fragmenting particles produced carrot-shaped tracks with length/diameter ratios of
>25. However, many tracks show bulbous upper regions and sometimes multiple ‘roots’
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Figure 1. A composite of long and short exposure images of Comet Wild 2 showing both the
complex nature of the surface of the surface of the nucleus and the many jets of dust and gas
leaving its surface (see Brownlee et al. 2006).

(Fig. 2). These tracks were produced by weakly bound aggregate particles that broke
apart on impact with the aerogel (Brownlee et al. 2006; Hörz et al. 2006). Typically the
upper portions of tracks are lined with melted aerogel containing dissolved projectile
material, the mid-track regions contain less melt and more preserved projectile material
and compressed aerogel, and the ends of the tracks contain largely unmelted materials
(terminal particles). The deepest penetrating particles are generally solid mineral grains
or aggregates comprised of micrometer-size or larger grains. Particle impacts were also
collected on the aluminum foils and frames that held the aerogel tiles in place in the
collector grid. Impacts on these produced bowl-shaped craters lined with melted, and in
some cases unmelted, projectile residues (Hörz et al. 2006).

For a period of six months afterwards a small fraction of these returned samples were
examined by a large Preliminary Examination Team (PET) that consisted of over 175
scientists from around the world. PET members studied the samples using a host of
different analytical techniques and their results have been reported in papers in special
issues of Science (Brownlee et al. 2006; Flynn et al. 2006; Keller et al. 2006; McKeegan
et al. 2006; Sandford et al. 2006; Zolensky et al. 2006) and Meteoritics and Planetary
Science (see MAPS, vol 43, No. 1/2 2008). At the conclusion of the preliminary exami-
nation period the samples were formally turned over to the NASA Curatorial Facility to
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Figure 2. Many Wild 2 particles that impacted the Stardust aerogel collector were composites
of many smaller grains. These particles broke up upon impact with the aerogel surface resulting
in complex track forms with cometary materials deposited all along their lengths. In this image
the surface of the aerogel collector is to the right and particles entered the aerogel moving from
right to left. A much simpler, narrower ’carrot’ track due to the impact of a single mineral grain
can be seen near the top of the image. Tracks lengths depend on the size and structure of the
impacting particle but are typically less than 1 cm in length.

be made available for allocation to the world’s scientists in the same manner as Apollo
samples, stratospheric cosmic dust samples, and Antarctic meteorites. Numerous sam-
ples have been distributed since that time and papers resulting from study of Stardust
samples now appear regularly in the peer-reviewed literature. Some of the highlights of
these studies are summarized in the section that follows.

4.2. Highlights from Studies of the Returned Comet Wild 2 Samples
Even in low-density aerogel, the hypervelocity capture of dust particles from Wild 2 re-
sulted in the destruction and alteration of a significant fraction of the impacting material.
This requires that care be taken to identify ‘pristine’ cometary materials from altered
cometary materials and secondary impact products - a process made more difficult by
the small nature of the samples. Despite these difficulties, it has been possible to learn
an impressive number of things from the returned samples. A few points of interest and
importance include:

(1) Comet 81P/Wild 2 is a repository of largely unprocessed protosolar nebular ma-
terials. The distribution of minerals and organics (abundance and composition) is het-
erogeneous both within and between particles (Flynn et al. 2006; Sandford et al. 2006;
Zolensky et al. 2006; Lanzirotti et al. 2008). These materials represent a highly un-
equilibrated reservoir of materials, suggesting they experienced very little parent body
processing after incorporation into the comet.

(2) The protosolar nebula experienced mixing that spanned essentially its entire radial
extent prior to the formation of the comet. Wild 2 samples contain everything from very
high temperature minerals (Zolensky et al. 2006; Zolensky et al. 2008) to highly volatile
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organics (Sandford et al. 2006; Cody et al. 2008). These various components could not
have been made at the same times in the same locations. Some must have formed very
near the protosun while others could never have been inside the orbit of Jupiter and
survived. And yet somehow they all got together in the comet formation zone.

(3) Comet 81P/Wild 2 is not simply an assemblage of circumstellar and interstellar
materials. Most of the minerals in the samples are crystalline and look very ‘meteoritic’
in composition and isotopic composition (McKeegan et al. 2006; Zolensky et al. 2006),
implying they are of protosolar origin, not presolar origin. Isotopically anomalous circum-
stellar grains are seen but are relatively uncommon (Stadermann et al. 2008). Interstellar
materials are more common but still represent a minor fraction of the total material (see
item 5 below; McKeegan et al. 2006).

(4) Organics are present and show a large and unprecedented compositional diversity.
The population of organics found in the samples are distinct from those seen in primitive
meteorites and IDPs, but some show similarities to both (Sandford et al. 2006; Cody
et al. 2008; Matrajt et al. 2008; Rotundi et al. 2008; Clemett et al. 2010). The organics
are very rich in both oxygen and nitrogen and contain a diverse set of both aromatic
and non-aromatic compounds. New materials not seen before in other extraterrestrial
materials include a volatile, largely non-aromatic population that has a relatively simple
chemistry (Sandford et al. 2006; Cody et al. 2008). Included in the organics is the amino
acid glycine (Glavin et al. 2008) whose cometary origin has been confirmed by isotopic
studies (Elsila et al. 2009).

(5) Many of the organics have an interstellar/protonebular heritage. While isotopically
anomalous circumstellar grains are very uncommon, organics with excesses of D and
15N are less so, implying these materials or their immediate precursors have a pre-solar
heritage (McKeegan et al. 2006; Stadermann et al. 2008).

In summary, the samples from Comet Wild 2 show no clear affinities with any spe-
cific meteorite type, although most of its major compositional components, particularly
the minerals, are similar to those found in primitive meteorites. While some ‘exotic’
circumstellar and interstellar materials are present, the samples are clearly dominated
by protosolar nebular materials that were apparently sampled from across the majority
of the protosolar disk, perhaps over an extended period. However, the highly unequili-
brated nature of the samples demonstrates that, once these materials were gathered into
the comet, they experienced very little parent body processing. Thus, comets (at least
as represented by Comet Wild 2) would seem to be very ‘primitive’ in the sense that
they have preserved considerable material that was largely unaltered by parent body
processes, but not particularly ‘primitive’ in terms of containing higher proportions of
presolar materials than other available meteoritic samples. It is probably worth stressing
one additional point - the enormous heterogeneity seen in the Stardust samples highlights
the dangers of inferring cometary compositions on the basis of measurements, remote or
otherwise, of individual species. For example, the D/H ratio measured telescopically in
an individual molecular species in a cometary coma is highly unlikely to represent a true
measure of the comet’s D content as a whole.

Of course, one of the advantages of sample return missions is that the items listed above
represent a hard lower limit to what will be learned from these samples. The samples are
still being be measured in laboratories around the world and will continue to be studied
for decades into the future. Further discoveries are sure to come.
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Figure 3. Asteroid Itokawa as seen by the Hayabusa spacecraft (see Yano et al. 2006). Itokawa
is a small (length ∼540 m) ‘rubble pile’ asteroid that shows evidence of having been collisonally
disrupted in the past.

5. The Hayabusa Asteroid Sample Return Mission
5.1. Overview of the Hayabusa Mission

The Japanese Hayabusa spacecraft was launched from Earth by JAXA on an MV-5 rocket
in May 2003. The spacecraft rendezvoused with its target, the small S(IV)-type asteroid
25143 Itokawa (Fig. 3), in September 2005 (Fujiwara et al. 2006), after which it carried out
an extensive series of remote sensing measurements. These included measurements by an
onboard near-infrared spectrometer (Abe et al. 2006) and an X-ray fluorescence detector
(Okada et al. 2006). These were used to estimate the approximate mineral and chemical
composition of the surface of the asteroid. The combined results of these measurements
suggested that asteroid Itokawa is a ‘rubble pile asteroid’ consisting of materials similar
to primitive LL5-6 Ordinary Chondrites. The spacecraft twice descended to the surface of
Itokawa to collect samples, once on 20 November 2005 and again on 26 November 2005 in
the vicinity of the MUSES-C Regio, an area on the asteroid dominated by cm-sized gravel
(Yano et al. 2006). Although the spacecraft’s sampling system failed to operate properly
during both descents, the inlet sampling horn of this system undoubtedly impacted with
the surface of the asteroid both times (Yano et al. 2006). The escape velocity of the
asteroid is sufficiently small (on the order of ∼0.2 m/sec) that these touchdown impacts
were sufficient to mobilize small dust grains from the asteroid’s surface to the spacecraft’s
sample container.

Despite a number of difficulties with the spacecraft, it was ultimately able to return
to Earth and successfully deliver its Sample Return Capsule (SRC) to Australia in 2010
(Abe et al. 2011). Subsequent opening of the sample canister in a specially prepared
cleanroom in Sagamihara, Japan demonstrated that, while the sampling system had not
recovered the full amount of material desired, it did contain thousands of particles in
the 1-200 micron diameter range. Analysis of these grains has since demonstrated that
these particles contain a mixture of contaminants associated with the spacecraft and dust
grains from the asteroid’s surface, with at least 1500 of the dust particles being asteroidal
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(Nakamura et al. 2011; Tsuchiyama et al. 2011). These samples constitute the second
extraterrestrial regolith to have been sampled, the only other being the Moon, which was
sampled by collections made by the Apollo and Luna missions (Heiken et al. 1991).

5.2. Highlights from Studies of the Returned Itokawa Samples

The Itokawa samples returned by Hayabusa have only been available for study for a
relatively short time, and as a result our understanding of them is still far from complete.
Nonetheless, the samples have been examined using a variety of analytical techniques and
a number of important findings have already been made. A few points of interest and
importance include:

(1) Itokawa materials are a match to LL Ordinary Chondrites. Particles found in
the collector range from monomineralic to polymineralic and contain both poorly- and
highly-equilibrated phases (∼20% and 80%, respectively. The types, compositions, rela-
tive abundances and densities of minerals in the returned samples provide a good match
to LL Ordinary Chondrites with the closest match being to petrographic grade LL5-6
(Nakamura et al. 2011; Tsuchiyama et al. 2011). Preliminary oxygen isotopic analyses
are consistent with this identification and oxygen isotopic ratios clearly demonstrate the
samples are extraterrestrial (Yurimoto et al. 2011).

(2) The returned dust particles show evidence of relatively short surface exposures. No-
ble gases extracted from individual grains show the presence of non-terrestrial solar wind
gases whose compositions and concentrations imply relatively short surface exposures
(<35 My) (Nagao et al. 2011). Additionally, approximately half of the examined parti-
cles show some evidence of space weathering at their surfaces, although the weathered
layers are not as ‘mature’ as those seen in lunar soils, implying lower total exposures
(Noguchi et al. 2011). Together, these results suggest that Itokawa has a relatively im-
mature regolith.

The examination of samples returned by the Hayabusa spacecraft is still in its earliest
stages at the time of this writing and only a small fraction of the available material
has been given more than a cursory examination. It is certain that additional discovers
remain to be made with these new and interesting samples.

6. Lessons Learned from Recent Missions
The needs and critical issues of sample return missions will vary with the nature of the

samples desired and the source bodies from which they are taken. However, all sample
return missions share a number of common requirements, and valuable lessons have been
learned from the recent Stardust and Hayabusa missions that will be of value for future
sample missions. Chief among these are issues associated with contamination control and
assessment. A discussion of many of these issues in context of the Stardust mission can be
found in Sandford et al. (2010). Summarized below are some lessons learned that should
pertain to most sample return missions:

(1) Sample return missions need to address both contamination control, i.e., mini-
mization of contamination, and contamination assessment, and these activities should
be carried out throughout the mission from mission design to sample recovery. Contam-
inants should be minimized where possible, but it should also be recognized that even
with contamination controls in place, there will likely still be some contamination. This
is particularly problematic for collections of organic materials. Given that some con-
tamination is likely to be inevitable, it is critical to characterize the nature of known
or potential contaminants so they can be distinguished from returned samples. Ideally,
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both contamination control assessment activities should be fully integrated into a sample
return mission’s budget and schedule.

(2) Contamination control and assessment requires cooperative efforts be made that in-
volve the spacecraft manufacturers, the spacecraft operators, the mission’s Science Team,
and whatever organization will ultimately be responsible for the distribution and long-
term curation of the returned samples. Each of these groups should identify an individual
or individuals responsible for organizing contamination control and assessment activities,
and these individuals need to work closely together across organizational boundaries.

(3) Oddly enough, one important issue that missions need to address early is to define
in a fairly rigorous way what is meant by the word ‘clean’ and how this definition will
translate into operational activities. It is surprising how this simple word can mean very
different things to different people - a spacecraft engineer may see ‘clean’ as an issue of
eliminating surface particulates of a certain size and clean something by wiping it with a
solvent soaked wipe, while an organic chemist may flinch in horror at the uniform organic
residue left behind when the solvent evaporates. This is one of many areas where there
are enormous benefits to clear and direct communications between mission scientists and
engineers. Of course, the agreed-on definition of ‘clean’ may well differ from mission to
mission, depending on the nature of the expected sample and how it will be analyzed.

(4) During construction of the spacecraft and sampling system, it is critical to docu-
ment what components/materials are used. Where possible, samples of these materials
should be collected and archived for ultimate storage at the time of manufacture. These
materials can then serve as controls and standards to help assess possible contamination
of the returned samples by spacecraft materials.

(5) It is important to use “witness coupons” to track the introduction of contaminates
during the manufacture, flight, and recovery of the spacecraft, and during the subsequent
removal of the samples from the sampling system. These coupons need to be removed
and examined quickly so that problems associated with unexpected or problematic con-
taminants can be dealt with rapidly (again, these activities should be explicitly funded
and scheduled within the mission).

(6) Witness coupons need to be designed so that they can easily be divided and dis-
tributed to multiple analysts in parallel. It is often not practical to do contamination
assessment measurements using multiple analytical techniques on the same coupon in se-
rial fashion. Sample return spacecraft should also carry a significant number of relevant
witness coupons. These material represents the all-important ‘blank’ or ‘control’ sample
that is critical to the interpretation of many studies of the returned samples and there
will be considerable demand for them. Also, since it is not always clear what materials
will work best for contamination control and assessment and different materials can re-
sult in different analytical constraints, it is generally desirable to use more than one type
of witness coupon.

(7) Plans must be made in advance so the organization responsible for the ultimate
curation of the returned samples is prepared to store and distribute not only the returned
samples, but also the associated contamination control and assessment materials (witness
coupons, samples of spacecraft materials, etc.).

7. Future Missions
Previous programs and missions like Apollo, Genesis, Stardust, and Hayabusa have

now amply demonstrated the enormous value of returning samples to Earth for study.
Given the value of these samples, and the wide variety of Solar System objects that
remain unsampled, it is therefore not surprising that a number of future sample return
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missions are being considered. In terms of missions to small, primitive Solar System
bodies, future sample return missions to both comets and asteroids are currently being
considered and, in several cases, being built.

In the case of future missions to asteroids, there are currently two missions preparing
for flight, the Japanese Hayabusa 2 mission and the NASA OSIRIS-REx New Frontiers
mission. Hayabusa 2 is essentially a follow-on mission to the original Hayabusa mission
and is currently targeted to visit asteroid (162173) 1999 JU3. The current schedule has
a proposed launch date of July 2014 with an expected arrival at the target in 2018. The
asteroid would be surveyed for one and a half years and sampled before the spacecraft
departed for Earth in December 2019, with a return to Earth in December 2020.

OSIRIS-REx was selected for flight by NASA in May 2011 and is scheduled to launch in
2016. It arrives at its target, asteroid 1999 RQ36, in late 2019 Once there, the spacecraft
uses a number of instruments, including several different cameras, a laser altimeter, and
two spectrometers, to take in situ observations to characterize the asteroid and establish
potential sampling sites. Once a final sampling site is identified and a sample is obtained,
the spacecraft will leave the asteroid in early 2021 and return its sample to the Earth on
24 September 2023.

Additional asteroid sample return missions are also in the wings, including the Marco
Polo mission under consideration by ESA.

There are currently no selected comet sample return missions in flight or in preparation
for flight, but a number of such missions are under consideration, and a comet sample
return mission is one of the key mission types identified as important in the most recent
Planetary Sciences Decadal Survey. It is therefore highly likely that one or more comet
sample return missions will be in the works in the not too distant future.

8. Conclusion
Sample return missions provide a powerful means of learning about the nature and

history of non-terrestrial bodies in our Solar System. Past sample return missions have
successfully returned samples of the Moon, the solar wind, Comet 81P/Wild 2, and the
asteroid 25143 Itokawa. Each of these sample returns has resulted in scientific advances
that could not have been made in any other way. Combined, they amply demonstrated
the value of sample return missions and strongly suggest that future such missions will
yield many additional new and important insights.
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Discussion

Chiar: Can you elaborate on the size range of individual grains as well as the size(s) of
the aggregates collected by the Stardust mission?

Sandford: Typical particles that hit the Stardust collector were in the 5-50 micron
diameter range. Some of these particles were single mineral grains, but many were aggre-
gate particles that consisted of micron and sub-micron grains. The Dust Flux Monitor
detected impacts of particles up to nearly 1 cm in size, but these were rare and none
struck the aerogel collector itself so little is known about their structure. Smaller grains
(<5 micron diameter) also struck the collector but these are difficult to count because
they create small, short tracks in the aerogel and are harder to find.

Cuylle: You mentioned the detection of amino acids in Stardust samples. Is anything
known about their chirality?
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Sandford: Unfortunately, the only amino acid that has been identified in Stardust
samples so far is glycine, which is not a chiral molecule, so nothing can currently be said
about the chirality of cometary amino acids.

de Vries: Can you say anything about the Fe/Mg ratios of the olivines returned by the
Hayabusa mission?

Sandford: The suite of minerals seen in the returned Hayabusa samples, their relative
abundances, and their chemical compositions are all good matches to what is seen in
LL Ordinary Chondrites. Olivines, which make up approximately a third of the samples
examined so far, typically show [Fe/(Fe+Mg)] values that fall in the 0.25-0.35 range,
which is also consistent with LL Ordinary Chondrites.


