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ABSTRACT: Despite the generally hostile nature of the environments involved, chemistry
does occur in space. Molecules are seen in environments that span a wide range of physical
and chemical conditions and that clearly were created by a multitude of chemical processes,
many of which differ substantially from those associated with traditional equilibrium
chemistry. The wide range of environmental conditions and processes involved with
chemistry in space yields complex populations of materials, and because the elements H, C,
O, and N are among the most abundant in the universe, many of these are organic in nature,
including some of direct astrobiological interest. Much of this chemistry occurs in “dense”
interstellar clouds and protostellar disks surrounding forming stars because these
environments have higher relative densities and more benign radiation fields than in stellar
ejectae or the diffuse interstellar medium. Because these are the environments in which new
planetary systems form, some of the chemical species made in these environments are
expected to be delivered to the surfaces of planets where they can potentially play key roles
in the origin of life. Because these chemical processes are universal and should occur in these
environments wherever they are found, this implies that some of the starting materials for life are likely to be widely distributed
throughout the universe.
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1. INTRODUCTION

1.1. Historical Perspective

Prior to the middle of the last century, it was generally thought
that the environments found in space were hostile to the
formation and survival of molecules and that chemical
reactions could not proceed efficiently. It was thus commonly
assumed that most of the matter in space would exist as either
atoms or amorphous dust grains rather than as individual
molecules. Furthermore, densities in most astrophysical
environments are low, and even when densities are higher,
the primary elements available for chemistry are largely
restricted to H and He (Figure 1), which would appear to
significantly limit the complexity of possible chemistry.
However, the development of new astronomical techniques,
particularly the advent of telescopes, detectors, and spec-
trometers that operate in the radio, infrared (IR), and
ultraviolet (UV)/visible portions of the electromagnetic
spectrum, ultimately demonstrated that this was not true. A
nice review of the early discoveries of interstellar molecules can
be found in ref 1. Certainly, chemistry in space is often limited
because of low densities and extreme temperatures (both high
and low), but this is compensated for, in part, by the vast
amounts of material and time available, and we now know that
much of the material in circumstellar and interstellar
environments is in molecular form.2−5

1.2. Environments

Matter in space can be thought of as being part of an immense
cycle that includes the formation of stars in interstellar dense
molecular clouds, the ejection of material from these same stars
as they age, and the mixing of these materials back into new
clouds (Figure 2). During this cycling process, a small fraction
of the material ends up in planetary systems and can be
incorporated into habitable planets. These environments span
an enormous range of conditions (density, molecular
concentration, temperature, radiation field, etc.), and it is
therefore not surprising that the observed populations of
materials vary considerably from one environment to another.
Many stars, late in their life cycles, undergo phases in which

they lose portions of their mass to space through either gradual
(stellar winds) or explosive (nova and supernova) processes.
Where the outflow conditions allow, these materials can form
molecules and dust grains. Depending on the local C/O ratios
in the ejectae, the main products can be minerals (O-rich
ejecta) or carbonaceous molecules and grains (C-rich
ejecta).6,7 Much of these materials are subsequently destroyed
or modified in the diffuse interstellar medium (ISM), an
environment that subjects them to sputtering, photodestruc-
tion, destructive shock waves from supernova, etc. Most
individual molecules are unable to survive in the gas phase in
the diffuse ISM, with the notable exception of polycyclic
aromatic hydrocarbons (PAHs) and related species. These
molecules are seen in the outflows of dying stars and are
sufficiently robust to resist complete photolytic destruction in
the diffuse ISM. As a result, they are a dominant form of
molecular carbon found in many astrophysical environ-
ments.2,8−10 With the exception of PAHs, most of the material
in the diffuse ISM that is not atomic exists in the form of
silicate grains and solid organic materials that contain aromatic
and aliphatic components.6,11−13

Perhaps the most compelling proof that at least some
material survives the trip from stellar synthesis through the
diffuse ISM is the existence of presolar grains found in
meteorites. Indeed, presolar grains of different compositions
(aluminum oxides, silicates, silicon carbide, graphite, etc.) have
been found in meteorites, and their circumstellar origins have
been demonstrated by the presence of nonsolar isotopic ratios
that indicate formation processes in a variety of nucleosyn-
thetic environments.14,15

However, from the perspective of prebiotic chemistry and
astrobiology, one of the most interesting types of extra-
terrestrial environments is that of dense interstellar molecular
clouds. These clouds contain enough material to be optically
thick so that their interiors are protected from much of the
stellar radiation that destroys most molecules in the diffuse
ISM. The large opacities of these clouds also allow their
interiors to cool to temperatures as low as 10−15 K. At these
temperatures, most gas-phase species (the exceptions being H,
H2, He, and Ne) will condense out onto dust grains in the
form of ice mantles (Figure 3). Under these conditions, little
“normal” chemistry of the sorts we are familiar with on Earth
can take place, but chemical reactions occur nonetheless. For
example, many atom−neutral and neutral−neutral reactions
(e.g., between radical species or in species with unsaturated
bonds) can also occur efficiently at low temperatures.16,17

Chemistry can also occur via gas−grain reactions in which
individual gas-phase atoms like H, C, N, and O collide with
grains, react with resident surface species on the grains, and
form new compounds.18 More complex species can be formed
when ionizing radiation is present. While the large optical
depths of clouds screen out most stellar radiation, cosmic rays
and the secondary energetic photons and electrons they create
when colliding with interstellar matter produce some
ionization, even in the densest clouds.19 In addition, newly
forming stars within dense interstellar clouds can also irradiate
nearby materials. This ionizing radiation produces ions and
radicals that are able to react even at low temperatures. Ions
produced in the gas phase can react in an extensive chain of
ion−molecule reactions that can lead to the formation of
numerous gas-phase species.20,21 However, the majority of the
material (other than H and He) in dense clouds is frozen out
in dust grain mantles, and it is ionizing radiation hitting these
ices that likely produces the most complex molecular
species.18,22−25

Similar chemical environments can also be found in the
protostellar disks that surround newly forming stars and
planetary systems.27 These objects contain, by astronomical
standards, high densities of material and are sufficiently
optically thick to generate very low temperatures at their
midplanes.28 As a result, the materials in protostellar disks are
expected to undergo many of the same processes considered
for interstellar dense molecular clouds, albeit on shorter time
scales.27,29

1.3. Focus of this Paper

While we will briefly discuss chemistry that occurs everywhere
in the cycle described and shown in Figure 2, in this paper we
will focus primarily on the chemistry that occurs in dense
interstellar molecular clouds and protostellar disks, i.e., the
environments in which new stars and planets form. These
environments are of particular interest because: (1) they
contain higher densities of materials and radiation conditions
that drive richer chemistry, and (2) it is materials found in
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these environments that are ultimately incorporated into new
planetary systems and delivered to the surface of planets via
meteorites and dust particles (see section 2.4.5), where they
may play a role in the emergence of life.

2. CHEMISTRY AT DIFFERENT STAGES OF THE LIFE
CYCLE OF MATTER

The astrophysical environments discussed in this paper include
conditions that contain temperatures ranging from 10 to 106 K
and number densities ranging from 0.004 to 106 nH cm−3.30

These environments are generally not physically directly
accessible for study, either because they are separated from
us by great distance (for example, the ejectae surrounding
distant stars, the diffuse ISM, dense molecular clouds, etc.) or
are separated from us in time (for example, the protosolar disk
from which our Solar System formed over 4.5 billion years
ago). Thus, most of what we know about the compositions of
material in space, and the processes that form and modify
them, are obtained by remote observations using telescopes
and, in the case of objects in the Solar System, in situ
spacecraft.
Our studies of distant objects are restricted to what we can

learn from photons that arrive at ground-based, airborne, and
spaceborne telescopes from these locations. As a result, the
primary technique used for detecting and identifying chemical
compounds in space is spectroscopy. Molecules in the gas
phase can be identified by detecting their rotational transitions
at microwave and radio wavelengths31 or the rotational
envelopes of their fundamental vibrational modes in the
infrared.32 Molecules in the solid state are generally not
amenable to identification at longer wavelengths. The
fundamental vibrational modes of molecules in the solid
state can often still be detected in the infrared,33 although
spectral confusion can be a problem due to the overlapping of
the modes of similar functional groups in different molecules.
Finally, electronic and nuclear transitions of individual

elements can also be detected at ultraviolet and higher
energies.34

Depending on the nature of the astronomical environment
in question, spectral features may be seen in either emission or
absorption. Emission features occur when molecules “cool”
after being excited by the absorption of energy from, for
example, a photon or a particle collision. A good example of
this is the nearly ubiquitous IR emission produced by
polycyclic aromatic hydrocarbons in space after they absorb
a UV photon.2 Spectral features in absorption are measured
when photons from a background source are absorbed by
material between the source and the observer. In this case, the
measured spectrum can contain features from both the source
and the intervening material. Obtaining the spectrum of the
intervening material then requires the observation of a suitable
“standard” source that is spectrally similar to the object being
observed, but that does not have intervening material along its
line of sight. This is the approach, for example, for measuring
the absorption features due to dust in the diffuse ISM that lies
between Earth and the center of our Galaxy.11

Whether spectral features are being observed in emission or
absorption, it is worth keeping in mind that telescopic
measurements are “line-of-sight” measurements. This means
that any spectral features being observed could be associated
with materials in the object being studied and all the materials
along the same line of sight in front of, or behind, the object.
As a result, it is often difficult to establish what the “local”
concentrations of detected molecules are.

2.1. Stellar Ejectae

Stars play a key role in the injection of new materials into the
interstellar medium that are then available to participate in
chemistry. The nature of the ejected materials depends
significantly on the nature of the original star. At the end of
their normal main sequence lifetimes, stars having intermediate
masses like our Sun usually eject material into space in a
relatively gentle process that forms a planetary nebula. In
contrast, more massive stars follow evolutionary processes that

Figure 1. The so-called Astronomer’s Periodic Table. In this figure, the elements are shown associated with boxes whose areas are proportional to
their cosmic abundances. Figure adapted with permission from ref 614. Copyright 2006 International Astronomical Union.
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lead to novae and supernovae, which eject material into space
in a far more explosive manner. These different types of ejecta
differ in both composition and potential for chemistry within
the outflow.
2.1.1. Planetary Nebula. Stars like the Sun spend many

billions of years stably residing on the main sequence where
the principle nucleosynthesis that is occurring is the fusion of
H into He in the star’s core. However, as the core of the star
becomes depleted in hydrogen, the star enters a red giant
phase in which the core contracts and begins to fuse He while

the outer envelope of the star expands and is gradually ejected
into space (Figure 4). This phase in an intermediate star’s
evolution is short, typically lasting only a few tens of thousands
of years. Once all of the red giant’s atmosphere has been
ejected, the outflowing material is exposed to harsh UV
radiation from the hot luminous core that is exposed. This
radiation ionizes much of the ejected material and produces
the planetary nebula (note that this name is a misnomer as the
nebula has nothing to do with planets).

Figure 2. Materials in space are cycled through a wide range of physical environments. As a consequence, the chemical processes that occur and
their products vary significantly from environment to environment.

Figure 3. Chemical reactions in space can occur in the gas phase (top), as part of gas−grain interactions (lower left), through exposure to ionizing
radiation (energetic photons and/or particles, lower middle), and via thermal cycling (lower right). These different processes occur in different
space environments and yield different populations of products. Figure adapted with permission from ref 26. Copyright 1999 Springer Nature.
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Despite the radiation from the central core of the star,
materials in the outflow can undergo chemical reactions to
form new molecules. The nature of the materials formed
depend critically on the O/C ratio of the expelled material.6,7

Initially, one of the main reactions is the combination of C and
O to form the very stable carbon monoxide molecule. The
subsequent chemistry depends critically on which element, C
or O, is depleted first. If C/O < 1, then there is excess O
available to react with Si to form silicates. If C/O > 1, then
there is excess C to form organic materials as well as carbides
such as SiC and TiC.
It is known that PAH molecules form in C-rich stellar winds

surrounding aging stars,2 but the exact mechanisms for their
formation are not known, and this has been a hot area of
research in recent years. There are many facets to this problem
including whether their formation is dominated by ion−
molecule reactions, neutral radical−radical reactions, or
something in between such as neutral radical−molecule
reactions. All these processes have been studied both
experimentally and computationally.17,35 There is also the
question as to whether PAHs form strictly from the continued
addition of C2, C3, or C4 groups (i.e., small organic molecules
containing either 2, 3, or 4 carbon atoms) with concomitant
ring closures,36−39 or whether the larger PAHs end up forming
by the addition of two smaller PAH molecules wherein their
last ring has not yet closed. A variation on this latter process
can occur when two smaller PAH molecules form a cluster and
are then chemically activated by one or more UV photons
creating radical cations, neutral radicals, or some combination
of these, thus enabling the two smaller PAH molecules to react
with one another.40−42 One aspect that needs to be considered,
however, is that in association mechanisms via either ion−
molecule or neutral radical−radical reactions, there generally
will not be a third body to eliminate excess energy, hence for

small molecules, the new molecule will need to either be
stabilized by emission of a photon or more likely ejection of a
small fragment such as H or CH.43 As the PAH or complex
organic molecule becomes larger, the excess energy can be
rapidly converted into vibrational energy via intramolecular
vibrational relaxation (IVR), giving the molecule sufficient
time to emit an IR photon before it falls apart. In all likelihood,
all of the mechanisms discussed here are probably in operation
with the dominant mechanism(s) determined by the specific
conditions present in a particular astrophysical environment.
Emission features seen in the IR spectra of carbon-rich

planetary nebulae were for many years referred to as the
unidentified infrared bands (UIBs). However, in the late
1980s, the PAH hypothesis stated that the UIBs were due to
cascade IR emission spectra originating from PAH molecules
and their derivatives, including cations and neutral radi-
cals.2,44,45 The PAH hypothesis is now generally accepted by
astronomers to be the source of the UIBs, and thus these bands
are now generally referred to as the aromatic infrared bands
(AIBs). Further, the definition of PAH-related molecules has
expanded to include partially hydrogenated PAH molecules
(Hn-PAHs), PAH molecules with one or more aliphatic chains
attached, and nitrogenated PAH molecules, usually called
polycyclic aromatic nitrogen heterocycles (PANHs), among
other possible derivatives.46,47

The AIBs observed in different astrophysical objects exhibit
small changes relative to one another, including variations in
their relative intensities, band profiles, and slight shifts in band
positions, which are clues about the chemical and physical
conditions present.46−48 For example, the presence of a small
shift in the peak position of the 6.2 μm band has been
suggested as an indicator of the presence of some PANH
molecules in the emitting PAH population.46,49,50 To allow
astronomers to determine the most likely composition of the
various PAH and PAH-related molecules, the NASA Ames
PAH database (hereafter referred to as “PAHdb”) has been
developed and successfully employed.51−53 PAHdb consists of
experimental (matrix isolation) IR spectra as well as computed
IR spectra using density functional theory (DFT) methods,
and relatively small one-particle basis sets, under the double
harmonic approximation. The overwhelming majority of the
data derives from DFT calculations. The PAHdb incorporates
the aforementioned data into a cascade emission model in
order to model the type of spectra that astronomers actually
observe. However, the lack of anharmonic information about
the vibrational frequencies significantly limits the usefulness of
this approach.
Recently, Mackie et al.54 have developed an approach to

compute a fully anharmonic cascade IR emission spectrum of
PAH molecules which should allow for a much more accurate
representation of the spectra that astronomers actually observe
and should allow for a much better interpretation of the
observations that are expected to come from the James Webb
Space Telescope (JWST). This approach is novel and has been
shown to be reasonably accurate when compared to high-
resolution absorption spectra,54,55 although improvements can
be made, for example, by using better electronic structure
methods and basis sets, and including 3:1 resonances in the
polyads. However, even for the levels of theory being used, the
calculations are somewhat expensive, and at least for now they
cannot be performed on PAH molecules with more than about
25−30 C atoms. Because it is generally believed that the PAH
molecules present in the diffuse ISM consists of around 50−

Figure 4. The famous Ring Nebula is a planetary nebula produced by
the ejection of material from the envelope of a dying star that is
reaching the end of its normal nucleosynthetic lifetime on the main
sequence. Image PRC99-01, Space Telescope Science Institute,
Hubble Heritage Team, AURA/STScI/NASA.
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100 C atoms,56 the approach developed by Mackie et al.54 will
need further development so that it can be applied to larger
PAH molecules and their derivatives.
An important component of PAH-related molecules is those

whose IR spectra contain aliphatic C−H stretching modes near
3.4 μm in addition to the typical aromatic C−H stretching
modes near 3.3 μm.57,58 These aliphatic features can result
from two possible types of modification to the parent PAH
molecule, either a partial hydrogenation of an aromatic
ring2,48,59 or by the attachment of a small aliphatic chain to
an aromatic ring.57,58,60 Both of these can result from the
photoprocessing of a parent PAH molecule in C-rich planetary
nebulae, and because the UV radiation fields may be intense,
any attached aliphatic chain would likely be small because it
would otherwise be ultimately destroyed.
One approach astronomers have used to determine the

degree of hydrogenation of PAH molecules (or the degree to
which aliphatic chains have been incorporated) is to compare
the ratio of the integrated intensities of the 3.4 and 3.3 μm
bands.2,48,58,61 By plotting the ratio of the integrated (3.4/3.3
μm) band intensities vs the ratio of the number of aliphatic to
aromatic C−H bonds for a set of partially hydrogenated PAHs
and/or PAHs with an aliphatic chain, one can fit a line to the
data and determine the slope of the line. This slope, referred to
as α, can be thought of as the ratio of aliphatic versus aromatic
C−H bond oscillator strength per bond. For gas-phase
experimental data, both high-resolution and low-resolution, α
was recently found to be 1.57 for PAH molecules spanning a
large range of hydrogenation,58 which is in reasonable
agreement with the value determined from theoretical
calculations, i.e., 1.69,61 although the sets of molecules used
in these two studies are somewhat different. Note that the
correlation between the aliphatic/aromatic intensity ratios and
the ratio of the number of aliphatic/aromatic C−H bonds, or,
in other words, the fit to a line, is very good (see Figure 7 in ref
58). These values are somewhat lower than that determined
from matrix isolation experiments, i.e., 2.76,48 which indicates
that the IR modes of aromatic C−H stretching vibrations are
suppressed more due to the matrix than the IR intensity of
aliphatic C−H stretches.62

Thus, measuring the ratio of the 3.4−3.3 μm band intensity
in astronomical observations yields significant information
about the nature of the organic material in an astrophysical
objects, including C-rich planetary nebulae, and a very good
early example of this is given by Sandford et al.,11 where they
examined not only the ratio of aliphatic to aromatic C−H
bonds but also the ratio of −CH2− to −CH3 groups in the
aliphatic material for various astrophysical targets. There is
much more chemical and physical information to be gleaned
from details of the AIBs. For example, recent work at longer
wavelengths has placed additional constraints on the nature of
partially hydrogenated PAHs (Hn-PAHs) in stars just entering
their protoplanetary nebular phases.47 Thus, why the AIBs
differ in different sources still has much to tell us and this will
be vitally important once the JWST era begins. Hence, this is
why studies aimed at improving the spectroscopic data in the
PAHdb remains an active area of research and will remain so
for the foreseeable future.
2.1.2. Novae and Supernovae. Novae and supernovae

represent a small fraction of the universe’s stars that eject
materials into space via powerful and highly luminous
explosive events. These explosive events are triggered by a
variety of conditions depending on the star(s) involved.

Because of the high energies involved in these explosions,
they are generally not ideal environments for the formation of
new chemical compounds in the ejected material. For example,
the ejecta from the supernova SN 1987A in the Large
Magellanic Cloud (Figure 5) has been monitored since the
supernova exploded in 1987, and relatively little has been seen
in terms of molecular formation in the outflow materials, and
what has been observed is largely restricted to simple
molecules like CO.63 Indeed, the ejection of materials from
these objects may well be responsible for the net destruction of
molecular materials as the powerful shock waves they produce
sweep up and process material in the surrounding ISM.64 For
this reason, we will not devote much consideration to chemical
processes in these objects.
However, it should be noted that while these objects do not

themselves seem to play a major role in the production of
organic molecular complexity, they still play a major role in
overall astrochemistry because they are key sites for nucleosyn-
thesis and produce many of the heavier elements of the
periodic table beyond C, N, and O that are important for
organic chemistry (for example, S and P).65 Thus, while these
objects are not the sites of complex chemistry, they provide the
elemental constituents that can participate in such chemistry in
other environments.
2.2. The Diffuse ISM

2.2.1. Conditions in the Diffuse ISM. It has been known
since the 1930s that the “empty space” between the stars is not
truly empty but contains small amounts of diffuse material.66,67

The initial evidence came from the observation of interstellar
“reddening” produced as visible light from distant objects
travels long distances through the interstellar medium.68,69 The
subsequent use of multiwavelength spectroscopy has demon-
strated that the diffuse ISM contains atomic and molecular gas,
as well as dust grains containing amorphous silicates, and

Figure 5. Supernova SN 1987A was a type-II supernova that was
observed in 1987. It is located in the Large Magellanic Cloud (LMC),
a dwarf satellite of the Milky Way, and is the closest observed
supernova since the observation of Kepler’s Supernova in 1604. Image
from the Hubble Telescope, Space Telescope Science Institute.
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aromatic and aliphatic hydrocarbons. In the sections below, we
concentrate on the organic fraction of these materials.
The diffuse ISM is characterized by low column densities,

typically ∼1020 H-nuclei cm−2 or less, with regions that are
subject to high UV fluxes and others that experience shocks
from supernova explosions.56,70,71 The diffuse ISM is mainly
composed of H2/H with less abundant heavier elements,
largely in atomic form. Diffuse clouds are sometimes further
broken down into diffuse atomic clouds, diffuse molecular
clouds, or translucent clouds, depending on their column
densities or H2/H and CO abundance ratios. We will mainly
focus on diffuse molecular clouds where the abundance ratio of
electrons to H atoms is ∼10−4, and similarly the abundance of
cations is elevated relative to dense molecular clouds (see
Figure 1 of ref 71). The chemistry of the diffuse ISM is mainly
driven by the intense UV photon fields and thus is largely
associated with the destruction and/or ionization of small
molecules. Hence the main molecular components of diffuse
molecular clouds are large molecules and grains which can
withstand the high radiation fields, although smaller organic
molecules have been identified in the diffuse medium.72 It is
well established that polycyclic aromatic hydrocarbons (PAHs)
and their derivatives, and aliphatic components, are the main
molecular species present in diffuse molecular clouds because
they are able to survive the harsh UV radiation fields,56 as
discussed in the following section.
2.2.2. PAHs. Infrared images taken of the diffuse ISM show

the presence of diffuse clouds (Figure 6) that are referred to as

the Infrared Cirrus. Infrared spectra taken from these clouds
show many of the same family of spectral features (AIBs)
associated with the presence of PAHs and related molecular
species as described in section 2.1.1, including the aromatic
C−H stretching band near 3.3 μm.73−75 This is not entirely
surprising because PAHs are one of the few classes of organics
that are robust enough to survive the high radiation fields

found in these environments, and one would expect the PAHs
being injected into the diffuse ISM from aging stars with strong
UV radiation fields to survive.

2.2.3. Aliphatics. Unlike PAHs, which were identified in
the diffuse ISM through the IR emission features produced
when these molecules are excited by interstellar UV photons,
the presence of aliphatic hydrocarbons in the diffuse ISM was
established by the detection of the aliphatic C−H stretching
bands seen in absorption in the spectra of distant stars.11,13,77

The features are seen near 2955, 2925, and 2870 cm−1 (3.38,
3.42, and 3.48 μm). The first two bands are interpreted as
being due to the asymmetric C−H stretching vibrations of
−CH3 and −CH2− groups, respectively, while the third feature
is thought to be a blend of the symmetric C−H stretching
mode of the same groups.11 The observation that the two
symmetric features do not show up as separate, distinct
features suggests that the aliphatics in question are associated
with some form of electronegative group. The relative
intensities of the bands suggest that the material has an overall
−CH3/−CH2− ratio of ∼2.5. Indeed, a reasonable fit to the
features is provided by the IR spectrum of n-butanol. However,
the materials responsible for these features are extremely
unlikely to be individual, simple aliphatic molecules, as these
would be quickly destroyed by UV radiation. Instead, it is
thought that the aliphatic groups in question are probably
incorporated into dust grains, where they exist as part of some
form of macromolecular material that consists of aromatic
units interlinked by aliphatic and other chains11,13,78 (Figure
7).
Some constraints can be placed on the distribution of this

material within the diffuse ISM by comparing the observed
strengths of the bands along lines of sight to different stars
throughout the Galaxy. The strengths of the aliphatic features
correlate well with the strength of the silicate Si−O stretching
bands seen near 10 μm along the same lines of sight but do not
correlate precisely with the extinction of visible light. This
suggests that the aliphatics and silicates could reside on the
same grains (although this is not required), and that grains
responsible for these IR features are not identical to the
population of materials responsible for much of the observed
visual extinction. It also suggests that the distribution of this
carbonaceous component of the diffuse ISM is not uniform
throughout the Galaxy but instead may increase in density
toward the center of the Galaxy. Possible models of the
distribution of such aliphatic materials suggest that the inner
portion of the Milky Way has a carrier density that is 5−35
times higher than in the local ISM. Depending on the model
used, the density of aliphatic material in the local ISM is about
1−2 −CH3 groups m

−3 and about 2−5 −CH2− groups m−3.79

2.3. Dense Interstellar Molecular Clouds

2.3.1. Conditions in Dense Interstellar Molecular
Clouds. Interstellar dense molecular clouds are complex
structures, and conditions within them vary considerably with
location (Figure 8). While molecular clouds account for only a
few percent of the volume of the Galaxy, interstellar matter
accounts for about 10−15% of the mass of the Milky Way’s
galactic disk, where it is largely concentrated near the galactic
plane and along its spiral arms.80 The vast majority of the mass
of these clouds consists of gas-phase H and H2 (see Figure 1).
The mean densities of “dense” clouds are typically ∼100−300
H2 cm−3, but these clouds are very inhomogeneous and
contain regions of higher density called clumps or cores with

Figure 6. A composite image of the South Celestial Pole made using
data taken by NASA’s Infrared Astronomical Satellite (IRAS)76 at
wavelengths of 12, 60, and 100 μm. The emission in this field is
dominated by an “infrared cirrus” resulting from the heating of dust
and molecules in the diffuse ISM by surrounding stellar radiation.
Image from the Infrared Processing and Analysis Center (IPAC).
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densities up to ∼104 H2 cm
−3 (which is still a better vacuum

than that found in most terrestrial vacuum systems).81 These
cores typically have temperatures of 10−20 K.82,83 The
surfaces of these clouds are exposed to significant radiation

from the surrounding diffuse ISM, but as one moves deeper
into quiescent parts of these clouds, this external radiation is
effectively screened out. However, materials in the interior of
dense clouds are still exposed to some ionizing radiation from
cosmic rays as well as UV photons and secondary electrons
created by cosmic ray interactions.84−86

Because of the low temperatures in these clouds, most
volatile materials are condensed into icy grain mantles that
surround dust particles within the clouds. These materials can
be probed by measuring the IR spectra of background or
embedded stars or protostars. Foreground materials in the
cloud produce absorption features superimposed on the largely
blackbody IR radiation produced by the background sources
(Figure 9a). These spectra typically show absorption features
characteristic of ices made up of relatively simple molecules
(Figure 9b). The most abundant ice-phase molecule is H2O,
but a host of other simple species are seen, including CO, CO2,
HCO, H2CO, CH3OH, CH4, and NH3.

3,4,12,33,87−89

The densest part of these clouds can become unstable and
collapse to form new stars and planetary systems.90 These
newly formed stars warm the surrounding cloud and can
ultimately lead to the breakup of the cloud.91 The wide range
of temperatures and pressures allows chemistry to occur via a
number of processes, including gas-phase reactions involving
ions and neutrals, gas−grain surface reactions involving atoms
and small molecules, and solid-state grain mantle reactions

Figure 7. Because simple, gas-phase aliphatic hydrocarbons would be quickly destroyed by radiation in the diffuse ISM, it is thought that the
observed aliphatic IR features seen in absorption toward distant stars are due to aliphatic moieties associated with more complex materials in dust
grains. Figure adapted with permission from ref 13. Copyright 2002 International Astronomical Society.

Figure 8. The Keyhole Nebula. This is a small dark cloud of cold gas
molecules, ice, and dust within the much larger Eta Carinae Nebula
complex in the constellation Carina. Dense cloud environments
support a rich mix of gas-phase, gas−grain, and irradiation chemistry
and are the sites of star and planet formation. (Image PRC00-06,
Space Telescope Science Institute, Hubble Heritage Team, AURA/
STScI/NASA.
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driven by ionizing radiation. These various processes are
described in more detail in the following sections.
2.3.2. Gas-Phase Chemistry. In dense molecular clouds,

the molecular number density, mostly H2, is typically 10
4−106

cm−3 at their cores. The temperature is typically low, between
10 and 100 K, but can be higher in hot cores. An increased
density compared to interstellar diffuse molecular clouds
means that stellar radiation from outside stars does not
penetrate deep inside the dense cloud. Despite the low
temperature and lack of external stellar radiation, these clouds
are considered to be great laboratories of molecular synthesis
in the ISM and many molecules have been identified in them.5

To date, more than 175 molecules have been identified from
the gas clouds via their spectra,89 although most of these
molecules are relatively small and consist of 12 or less atoms.
An example of a dense cloud is the Taurus Molecular Cloud-1
(TMC-1), in which over 60 molecular species have been
identified.
Molecular formation in dense molecular clouds is dictated

by molecular collisions, which are, although greatly increased
compared to diffuse clouds, still very low, and most collisions
do not result in a chemical reaction (Figure 10). Molecular
collisions that do result in a reaction can be of two types: (1)
neutral−neutral molecular reactions that generally require
significant activation energies and are thus less likely to take
place given the low temperatures of these clouds, and (2) ion−
molecule reactions that do not require activation energy and
are thus more likely to be successful. Despite the lack of
external stellar radiation dense molecular clouds are not
completely devoid of ionizing radiation. Indeed, materials in
dense clouds are exposed to cosmic rays, cosmic-ray-generated
electrons, and UV photons produced by the de-excitation of
H2 molecules excited by the impact of cosmic-ray-generated
electrons, the Prasad−Tarafdar mechanism.86 These energetic
and ionic species power molecular excitation and ion
formation. In particular, energetic ions can lead to physical
and chemical changes, e.g., by photoionizing and/or photo-
dissociating species, or via ion−molecule reactions, which play
a significant role in the formation of small-sized molecules in
the gas phase.
2.3.2.1. Photoionization and Photodissociation. Photo-

ionization of small species such as diatomic hydrides of carbon,
oxygen, nitrogen, and some other small molecules such as

H2O, HCO, and H2CO is known to occur in the dense
molecular clouds by the action of ionizing radiation.92,93

Photodissociation follows the excitation of molecules by UV to
excited states that are either directly dissociative or
predissociative, with reaction rates of ∼10−11 or lower in the
dark clouds. These excited molecules then dissociate into their
atomic components, either as radicals or ions. Such reactions
include the dissociation of H2, CO, HCO, HCN, H2CO, and
H2O.

94 Photodissociation rates typically range between 10−14

and 10−10 s−1 and depend on the depth and UV flux of the dark
molecular cloud. Photodissociation and photoionization
produce ions and radicals from small species, but these

Figure 9. (a) The materials in dense clouds can be probed by measuring the IR absorption features superimposed on the spectra of embedded and
background IR sources. (b) The absorption bands seen in dense cloud spectra are dominated by silicate dust and ice mantles made of a mixture of
simple, volatile molecules. (b) Reproduced with permission from ref 87. Copyright 1996 EDP Sciences.

Figure 10. Representative chemical processes in the dense molecular
clouds, photodissociation, photoionization, neutral−neutral, reactions,
ion−molecule reactions, and reactions in ices leading to ever growing
molecular complexity, set on a background of OMC-1 in the Orion
Molecular Cloud.
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processes are also involved in ion−molecule reactions for
further growth of the material into larger molecules.
2.3.2.2. Ion−Molecule Reactions. Molecular ions can form

via direct ionization of neutral molecules exposed to UV
radiation and/or cosmic rays (energetic particles, mostly
protons) via ion−molecule type reactions due to direct
electrostatic attraction of ions and neutrals, via attachment of
protons with neutral molecules, or via collisional transfer or
exchange of charge from ionized H2 or H3

+.95−100 Ions have
larger cross sections for chemical reactions so that ion−
molecule reactions are effective, barrierless in the entrance
channel, and usually fast (they take place at the collision rate),
with rate constants as high as 10−9 cm3 s−1.101 This implies that
they do not require an activation energy or high temperature to
cross the reaction barriers. Instead of following the Arrhenius
equation, their reaction kinetics are better described by the
Langevin equation.102,103 These reactions sometimes show a
negative temperature dependence, i.e., they become faster at
lower temperature. For these reasons, ion−molecule reactions
play an important role in starting molecular growth in low-
temperature dark dense molecular clouds.104,105 Chemistry
involving carbon, nitrogen, and oxygen starts off with ion−
molecule type reactions89,106 toward forming molecules of 2−6
atoms. Although this mechanism only leads to the formation of
molecules that are rather small, these gas-phase molecular
syntheses result in the formation of molecules such as
formaldehyde and methyl alcohol,107 which are the seeds of
complex interstellar organic chemistry.
Of the approximately 175 molecules that are observed in

dense molecular clouds, some 60 of them are observed in
TMC-1. These molecules include cationic species (CH+, OH+,
SH+, HCO2

+, C3H
+, H2COH

+, C60
+, etc.), anions (C8H

−,
C6H

−, CN−), and many neutral molecules that include amines,
nitriles, aldehydes, carboxylic acids, and alcohols,89 i.e.,
molecules of great astrobiological interest. Chemical models
to explain the formation of molecules in the gas phase were
first proposed in the early 1980s and now include over 450
species, thousands of chemical reactions, and rate constants.108

Nevertheless, chemical models for dark clouds still lack a lot of
key reactions, their products, and their formation rate
constants. Laboratory and theoretical investigations of the
formation of new reaction pathways, leading to the formation
of complex organic molecules via ion−molecule reactions have
allowed a better understanding of the formation of specific
molecules.37,43,109−115 Some theoretical investigations were
carried out to investigate the possibility of formation of
nitrogenated heterocyclic molecules by the reaction of HCN
with acetylene and other hydrocarbons.109 Pyrimidine cation
was proposed, based on laboratory and theoretical data, to be
synthesized via such a mechanism in cold molecular clouds.116

However, no nitrogenated heterocyclic molecules have been
identified in the interstellar molecular clouds thus far,117−120

although they are found in abundance in meteorites,121−127

indicating that nitrogen heterocycles are formed abiotically in
space. Laboratory experimental work also focused on the ion−
molecular formation of bicyclic aromatic molecules such as
anthracene and other PAHs.36,128−130 Larger molecules tend to
be frozen on cold grains and mixed in CO and H2O ices in
cold dense media, which makes it difficult for them to be
observed in the gas phase. Nevertheless, identification of large
molecular species, including neutral, cationic, and anionic
species in the cold, dense ISM indicate that these species can

be formed under such conditions, probably via two-body
collisions.

2.3.2.3. Radical−Molecule Reactions. Some neutral−
neutral reactions, especially when they include radicals, have
been shown to be sometimes barrierless, and occurring
substantially fast, even at low temperatures relevant to dark
cloud environments.17,131−134 For example, a combination of
experimental studies and quantum chemical calculations
showed that the reaction between a pyridyl radical and
butadiene proceeds via a barrierless pathway in the entrance
channel to form N-heterocycles.135,136 Therefore, nitrogenated
heterocyclic molecules may be synthesized in the cold ambient
temperatures of dark clouds, as the barriers for their formation
are submerged.

2.3.3. Gas−Grain Chemistry. Although most of species in
the ISM have been detected in the gas phase, a non-negligible
fraction of them is believed to have formed in the solid phase
on the surface of small, cold grains and then released to the gas
phase via photoinduced or thermal desorption. These grains
are usually made of silicates or carbonaceous matter (graphite
or soot-like material). They are believed to be formed in the
outflows of red giant stars.137−140 These grains are cold
(∼100 K in diffuse clouds and ∼10 K in dense clouds), so that
most gas-phase species present can condense on their
surface,141,142 with the exception of H2 and He in all ISM
media, and species such as CO, N2, and O2 in warmer
environments. This does not mean, however, that CO, N2, and
O2 cannot be present in colder ices, where they can be trapped
inside ice matrices made of mixtures of other frozen species.
Dust grains increase the probability for reactions between

species to take place, as species are closer to each other and
thus have a higher probability to meet. Reactions between
species are then only limited by their diffusion properties on
the surface of the grains. Grain surfaces can play the role of
catalyst, as it is the case for the formation of H2. Indeed, H2
cannot be formed in the gas phase because of the excess energy
resulting from its formation leads to the redissociation of the
H2, and grain surfaces play the role of a third body to absorb
this excess energy and allow for the formation of H2.

143−148

Depending on the local H/H2 ratio in a given environment,
chemical models show that other simple molecules such as O2,
N2, or hydrides (H2O, CH4, NH3, CH3OH) can also
form.18,149−151 In dense cloud environments where H > H2,
these reactions create H2 and hydrides like CH4, CH3OH,
NH3, and H2O from the hydrogenation of C, N, and O. On the
other hand, when H < H2, reactions involving heteroatoms
become important and species like N2 and O2 predominate.
Consequently, grain surface reactions will depend on the type
of ice mantles in which they take place, either polar, H-bonded
ices, or less polar ices containing unsaturated molecules, as
supported by astronomical observations.152−154

The icy mantles that form on the surface of grains is also
very important for the chemical evolution of interstellar
environments. Indeed, ice matrices create a medium in which
species can diffuse, interact, and be stabilized by the matrix via
intermolecular interactions. Because such icy mantles only
form in environments where temperatures are very low (10−
100 K), reactions are mostly limited by the mobility of the
species in the ice. Ice matrices can also stabilize reactive species
created from the irradiation of the condensed species, such as
radicals and ions. Because reactions involving radicals are
typically barrierless, even at very low temperatures, this
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mechanism provides an efficient way to form larger, more
complex molecules within the ices.109

2.3.4. Radiation-Driven Chemistry and the Photolysis
of Ices. 2.3.4.1. Overview of the Chemistry. Chemical
processing within low-temperature (<20 K) astrophysical ices
is largely driven by ionizing radiation in the form of high-
energy photons and cosmic rays that break bonds in the
molecules in the ice and produce ions and radicals that can
react even at such low temperatures. When reactants are next
to each other, some products can be formed immediately,
while others only form when the ices are warmed and species
become more mobile (Figure 3).

Exposure of ices with even the simplest compositions to
ionizing radiation results in the production of an extremely
complex mixture of products. Figure 11 shows the mass
spectrum of the refractory material (residue) consisting of the
products resulting from the UV irradiation of an
H2O:CH3OH:NH3:CO = 100:50:1:1 ice at 15 K and
recovered at room temperature, demonstrating the production
of hundreds to thousands of new, more complex, refractory
molecular species.24 If polycyclic aromatic hydrocarbons
(PAHs) or heterocyclic molecules are present in the starting
ice mixtures, an even more diverse set of products is produced.
This chemistry is very “robust” in the sense that the types of

materials produced are relatively insensitive to many of the
environmental parameters of the irradiation, although their
relative and total abundances may vary. For example, the
temperature of the ice during irradiation is relatively
unimportant; all that is required is that the ice be cold enough

that the starting materials of interest remain condensed during
the irradiation.155,156 H2O is the dominant species in many
astrophysical ices, and in H2O-rich ices irradiation processes
yield similar products over the entire 10−150 K temperature
range.23 In many ices, this processing is similarly insensitive to
the source of the ionization; identical ices yield similar
products independent of whether they are irradiated by
energetic protons or UV photons.157−160 The basic suite of
products is even relatively insensitive to the composition of the
ices themselves, provided they contain fragmentable molecular
sources of C, H, O, and N. For example, amino acids are
produced by the irradiation of ices independent of whether the
initial carrier of C in the ices is CH3OH, CH4, CO, CO2, or a
combinations of those,155,161−163 and whether the initial carrier
of N is NH3 or HCN.

164

2.3.4.2. Description of Laboratory Studies. Processing of
ices with energetic photons and/or particles have been studied
in the laboratory for more than three decades. These studies
include: (i) measurements of spectra of pure ices and ice
mixtures, mostly in the infrared165−181 and ultraviolet;182−187

(ii) measurements of IR band strengths of individual ices in
their pure matrix and when embedded in other ice
matrices;165,166,188−190 (iii) measurements of photoabsorption
cross sections of individual ices in their pure matrix and when
embedded in other ice matrices when subjected to ionizing
radiation such as UV photons, electrons, protons, and heavier
ions;185,186,191−194 (iv) measurements of optical constants of
pure ices and ices in mixtures;178−180,182,189,190,195−198 (v)
measurements of binding energies of pure ices and when
embedded in other ice matrices;165,199−205 (vi) studies of the
formation of, and reactions between, radicals and ions from
pure ices, ice mixtures, and PAHs in ice matrices;128,130,206−215

(vii) formation of complex organic molecules in ice matrices at
low temperature216−218 and during the warm-up of ices;219−222

and (viii) formation of refractory molecules from ices
processed by UV photons or energetic particles that are
recovered in the resulting residues at room temper-
ature,23,223−229 including a wide range of molecules of
astrobiological interest that are described in detail in section
2.3.4.4.
Laboratory experiments are typically conducted in vacuum

chambers pumped to high or ultrahigh vacuum pressures
(<10−7 mbar). A picture and schematic of one of the vacuum
systems used at NASA Ames Research Center are shown in
Figure 12. Ice samples, either pure ices or ice mixtures, are
typically deposited from the gas phase onto a substrate (IR-
transparent windows such as KBr, CsI, MgF2, or ZnSe for IR
studies, and metals such as aluminum, copper, gold, or quartz
microbalances). Deposition is usually done via an inlet tube,
although some studies have used microcapillary arrays for gas
deposition.230−234 The deposition is usually controlled with a
needle valve and can be adjusted for each experiment. The
substrate onto which ice samples are deposited is cooled down
to cryogenic temperatures, typically 5−20 K when using a
liquid helium cryostat or ∼80 K when using a liquid nitrogen
cryostat. Gas-phase samples are usually obtained from the
vapors of pure liquids (e.g., H2O, CH3OH, benzene,
pyrimidine) or from gas lecture bottles for other species
(e.g., CO, CO2, NH3, CH4). Vapors and gas are usually mixed
prior to deposition onto the substrate, using a gas mixture
manifold. In some cases, more refractory species, mostly solids
such as powders and crystals, can also be added to the
mixtures. However, because these species have a very low

Figure 11. The microprobe laser-desorption laser-ionization mass
spectrometry (μL2 MS) spectra of an ice photolysis residue and two
controls. Trace A is the mass spectrum of a control, i.e., a UV-
irradiated H2O ice in which no organic synthesis is expected. Trace B
is the mass spectrum of a UV-irradiated H2O:CH3OH:NH3:CO =
100:50:1:1 ice mixture at 15 K, which shows hundreds of peaks, each
corresponding to the mass of one or more organic compounds
produced from the UV irradiation of the starting ices. Trace C is the
mass spectrum of an unphotolyzed ice mixture like that used for B.
The peak at m/z = 100 is toluene-d10 added during analysis as a
standard, and the peaks at 204, 206, 207, and 208 correspond to lead
desorbed from the brass sample substrate. Reproduced with
permission from ref 24. Copyright 2004 Elsevier.
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vapor pressure or no vapor pressure at all, they are codeposited
with the other gas samples through a separate tube that is itself
heated with a resistive heat tape in order to sublime the
refractory species. The temperature at which the tube needs to
be heated is determined prior to the experiments in order to
control the sublimation and deposition rate. This is the
method used to embed most PAHs and some N-heterocycles
in ice mixtures.159,209,210,212,214,235−247

Ices can be irradiated with a wide range of photon and
energetic particle sources.
H2 UV Lamps. The most common light source used to

process ices in the laboratory is the microwave-powered H2
discharge lamp. This lamp mostly emits Lyman-α photons
(121.6 nm, 10.2 eV) and a continuum of H2 bands in the 155−
165 nm range (7.5−8.0 eV), with a photon flux of ∼1015
photons cm−2 s−1.248 Such a UV source is a good analogue to
the UV radiation field in the cold astrophysical environ-
ments.164,185,186,235 H2 lamps can be used in different
configurations by modifying the pressure of the flowing H2
gas, adding He, and/or adding filters, in order to increase/
decrease the intensity of a given band or spectral range, or to
cut off a whole portion of the emission spectrum.249

Synchrotron Radiation. Another type of light source routinely
employed to irradiate ice samples is synchrotron radiation.
Most synchrotron experiments use photon energies in the UV/
extreme UV (EUV)250−257 and X-ray ranges.258−264 Synchro-
tron facilities are available in different countries (e.g., ALS in
the USA, SOLEIL in France, Spring-8 in Japan, NSRRC in
Taiwan, LNLS in Brazil) and provide photon beams that are
tunable. Each beamline has its specific properties in terms of
energy range (typically, from vacuum UV to hard X-rays),
spectral resolution, spatial resolution, and fluxes. Photons
emitted by such beamlines can be monochromatic or span a
wide range of energies. Although monochromatic light sources
are not directly relevant to astrophysical conditions, the
flexibility of synchrotron beams allows for studies of specific

processes and reactions, because the energy can be optimized
to be absorbed by a given compound, e.g., for the study of
photoinduced processes such as photodissociation, photo-
desorption, or chemical reactions as a function of the energy of
the light irradiating a sample. Synchrotron beams have also
been used to irradiate ice samples with circularly polarized UV
light (UV-CPL) in order to induce an asymmetry in the
photoprocessing of chiral compounds. For instance, amino
acids such as alanine and 2,3-diaminopropanoic acids in
residues produced from the UV-CPL irradiation of
H2O:CH3OH:NH3 ice mixtures at low temperature showed
enantiomeric excesses that were correlated to the polarization
of the incident photons.265−267

Energetic Protons and Ions. In dense molecular clouds that are
too optically thick for UV photons to penetrate, cosmic rays
may be the dominant source of irradiation for chemistry to
happen. Cosmic rays consist of a variety of high-energy
charged particles, mostly atomic nuclei, that are dominated by
protons. The effects of high-energy proton bombardment (0.8
MeV, typically generated by a Van de Graaff accelerator) on
ices of astrophysical interest have been extensively studied for
ices relevant to the ISM or cold Solar System objects (icy
satellites, comets).159,268−275 Several of these studies compared
the effects of energetic protons to UV photons.158,160,206,276

Energetic protons can break chemical bonds that cannot be
broken with UV photons (e.g., the NN bond in N2), but
comparison studies have shown for example that the UV
irradiation or the 0.8 MeV proton bombardment of
astrophysical ice analogues resulted in the production of
organic residues whose IR spectra are very similar,158

indicating that the formation of complex organic molecules
from ices often does not significantly depend on the energy
source itself, although some products can only be formed via
proton bombardment,206 allowing us to distinguish UV-
induced chemistry from proton-induced chemistry. It must
be noted that the interaction between protons and interstellar

Figure 12. (a) Photograph of one of the vacuum systems at NASA Ames Research Center used to irradiate ice mixtures and produce organic
residues, with the UV lamp on. (b) Schematic of the vacuum chamber showing the substrate, how the gases are deposited to the substrate, how
they are irradiated, and how they can be analyzed using IR spectroscopy.
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molecules can create secondary UV photons and electrons,
which are believed to play an important role in the ensuing
chemistry when ices are bombarded by energetic protons.
Finally, some experiments have used more energetic, heavy,
highly charged atomic ions to irradiate ices, such as 15.7 MeV
16O5+ or 46 MeV 56Ni13+ ions provided by the GANIL
accelerator in France.277−279

Electron Bombardment. Electrons can also be a source of
irradiation in the ISM and the Solar System. These electrons
can be generated as byproducts of interaction between cosmic
rays and molecules in the ISM or from the strong magnetic
fields of giant planets (mainly, Jupiter and Saturn). Experi-
ments using electrons can be divided in two categories, as both
the effects of high-energy280−287 and low-energy (<20 eV)
electrons288−290 on ices have been studied, and both shown to
induce chemistry in ices. Energetic electrons can break bonds
that UV photons cannot, so that electron-induced chemistry is
expected to be different from that induced by UV photons. For
example, although Lyman-α photons (10.2 eV) are energetic
enough to break the NN bond (9.8 eV) in N2, the
absorption cross section of this bond at this wavelength is too
small291 so that N2 can only be dissociated via a photoinduced
process involving another atom or molecule. One study of UV
irradiation and electron bombardment of N2:CH4:CO
(100:1:1) ice mixtures, i.e., ices simulating the surface of
Pluto and other trans-Neptunian objects (TNOs) showed that
the residues produced from electron bombardment were twice
as rich in nitrogen as the equivalent residues produced from
UV irradiation.284,292 Finally, a comparison study between the
effects of low-energy (<20 eV) and high-energy (1 keV)
electrons on methanol ice at 85 K showed that similar products
are formed in both experiments, suggesting that the chemistry
induced by high-energy electrons may be attributable to low-
energy secondary electron interactions with the methanol
ice.290

A wide range of spectroscopic and analytical techniques have
been used to study the chemical and physical composition and
evolution of ices from low to higher temperatures, their
photoirradiation or bombardment with energetic particles, and
the resulting residues produced during these experiments and
recovered at room temperature.
IR Spectroscopy and Microscopy. Infrared spectroscopy is one

of the main techniques used to determine the chemical
composition of ices at low temperature in situ and to monitor
its evolution with time and when subjected to ionizing
radiation. Spectroscopy in the mid-IR range gives information
about the chemical bonds present in the ices and allows for the
quantification of some of the carriers responsible for these
modes. With a few exceptions, IR spectroscopy of the ices in
dense clouds does not allow for the identification of individual
species but rather for the presence of the main chemical
moieties (i.e., hydroxyls, carbonyls, aliphatic vs aromatic
chains). There are a few important exceptions though, as IR
modes associated with H2O, CO, CO2, and sometimes NH3,
CH3OH, H2CO, HNCO, NH4

+, and the HCO• radical can be
seen in cold interstellar ices.23,222,270,293−295 Identifications of
these bands depend strongly on the ice mixtures and on the
astrophysical environments, as the presence of a large number
of different species and their molecular interactions result in
spectral confusion. It must, however, be noted that when
observing ices in astrophysical environments, several IR bands
associated with organic material may be masked by the
presence of broad IR bands associated with Si−O modes from

silicates around 10 μm (∼1000 cm−1).296−306 Nevertheless, IR
spectroscopy remains one of the most used techniques to study
ices in the laboratory and to compare laboratory data with
astronomical observations from IR space observatories such as
IRAS, ISO, and Spitzer.3,4,12,87,307−315

In addition, IR spectroscopy (in particular IR microscopy) is
an important tool to study the composition of the refractory
organic residues produced from the irradiation of ices, even
though only chemical groups and bonds can be identified in
such IR spectra. Two notable exceptions are the identification
in room-temperature residues of the ammonium ion
(NH4

+)4,228,265,295,308,316 and hexamethylenetetramine
(HMT) thanks to the presence of several of its IR
bands.23,228,317,318 HMT is believed to be very abundant in
residues,319 and therefore in any material resulting from the
photoprocessing of astrophysical ices, and may be one of the
sources of amino acids as well as other compounds of
astrobiological interest found in meteorites (see section 2.3.4.4
for more details).
IR spectroscopy in the near- and far-IR ranges can also

provide information about the composition of organic
materials both in laboratory studies and astronomical
observations. For instance, near-IR observations are common
for the study of cold Solar System objects such as TNOs,
including Pluto, Charon, and 2014 MU69 (Arrokoth), which
were recently visited by the New Horizons mission.320−326 Such
observations resulted in the detection of H2O and CH3OH on
Pluto, H2O, and NH3 on Charon, and H2O and possibly
CH3OH on Arrokoth. On the other hand, far-IR spectroscopy
is used to study lattice modes of larger organic compounds
such as PAHs.327−329 These modes, which can be observed in
astronomical spectra, support the presence of these large PAH
compounds in different astrophysical environments.70

Raman Spectroscopy and Microscopy. Raman spectroscopy has
been used as a complementary technique to IR spectroscopy to
study spectral properties of ices of astrophysical interest.330,331

Raman spectroscopy is a useful tool to study ice species that
are not IR active and thus cannot be studied using IR
spectroscopy, such as N2 and O2. However, to date, only a few
Raman spectroscopy studies applied to astrophysical ices have
been reported for specific pure compounds (H2O, CO, CH4)
or ice mixtures (H2O + CH4, H2O + CH4 + N2, H2O +
C6H6).

332−334 Other reported laboratory Raman spectroscopy
studies of ices are for terrestrial samples,335−337 but they
support the use of this technique to study ices of astrophysical
interest containing N2 and O2 and to detect them in
astrophysical objects. Raman spectroscopy is also often used
to obtain additional information on structural properties of
carbonaceous and hydrocarbon samples.338−345 However,
there are not many laboratory Raman data for irradiated ice
mixtures of astrophysical interest, with a few exceptions,330 and
no Raman data for organic residues produced from the
photoprocessing of such ices.
Mass Spectrometry. Mass spectrometry is also often used to

identify compounds that are desorbed from an ice surface
during photoprocessing and/or warm-up to room temperature.
This allows for the identification of some of the photoproducts
produced in the ices but difficult to identify using IR
spectroscopy due to their weak bands and/or the presence
of other species whose IR bands dominate or mask those of
less abundant species. Mass spectrometry is also used in
temperature program desorption (TPD) experiments, in which
the volatile compounds subliming from the warming ice can be
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identified thanks to their mass.202,204,219,346−353 Identifying
these volatile compounds is important because a lot of them do
not remain in the final organic residues recovered at room
temperature, and their identification may provide important
information about the formation mechanisms of organic
compounds taking place in the ice at low temperature or
during warm-up, by identifying the missing links between the
ices and the more complex, refractory molecules constituting
the residues.219−222,346,347 In addition, mass spectrometry,
most of the time in combination with TPD, is used to study
processes of radiation-induced desorption of pure ices and ice
mixtures.249,347−357 Finally, more recent studies have used
Orbitrap high-resolution mass spectrometry to analyze the
composition of laboratory residues as well as meteoritic
samples.358−363 The high-resolution of this mass spectrometry
technique allows for the identification of compounds which
have very similar molecular masses but have very different
chemical formulas (e.g., CO vs N2).
ReTOF-MS and L2MS. Reflectron time-of-flight mass

spectrometry (ReTOF-MS) is a recent technique used
together with soft VUV ionization to target specific molecules
and discard others. Ionization energies are tuned from a
Nd:YAG laser. In particular, this technique has been used to
identify and distinguish compounds that have the same
chemical formula (isomers) and therefore cannot be
distinguished using standard mass spectrometry, for example,
during their sublimation from ices that have been exposed to
energetic electrons.364−367 This technique has also been
proposed to be used for the detection of microorganisms by
elemental composition analyses of regolith samples, permafrost
samples, and extraterrestrial icy bodies.368 Two-step laser
desorption/ionization mass spectrometry (L2MS) is another
powerful analytical technique used to analyze a broad variety of
samples. L2MS decouples the desorption process from the
ionization process by using a different laser for each step. By
decoupling desorption from ionization, it provides the added
flexibility of allowing both laser power and wavelength to be
optimized independently for each step. For the desorption
process, it has been shown that an IR laser (typically, a CO2
laser) can efficiently desorb a wide range of molecules, while
the ionization step is performed subsequently with a UV
laser.369 It has proven very useful for studying ices,370,371

laboratory residues produced from ice photolysis24,159 (Figure
11), Titan tholin laboratory analogues,372−376 PAHs,377,378 and
carbonaceous meteorites.379−384

XANES Spectroscopy. Other laboratory analytical techniques
are mainly used to study the composition of the organic
residues resulting from the photoprocessing of ices. These
residues are very complex materials consisting of hundreds or
thousands of organic compounds (Figure 11).24 Therefore, it is
impossible to list the full inventory of molecules that constitute
such residues. Complementary to IR spectroscopy, X-ray
absorption near-edge structure (XANES) spectroscopy is a
powerful technique to obtain information about the functional
groups present in residues as a whole.229 In addition, XANES
spectroscopy allows for the determination of relative elemental
composition, e.g., N/C and O/C ratios, which is not possible
using IR spectroscopy. Such elemental composition measure-
ments showed that laboratory organic residues tend to be
richer in nitrogen and oxygen compared with samples returned
from Comet Wild 2 by the Stardust mission,229,385−387

interplanetary dust particles,388−390 and meteorites.391

HPLC and GC-MS. Because organic residues are made of
hundreds or thousands of compounds24 (see Figure 11), a lot
of laboratory studies searched for the presence of specific
compounds in these residues, regardless of their abundance.
The first families of compounds searched for were molecules of
astrobiological interest such as amino acids, sugar derivatives,
and nucleobases (see section 2.3.4.4). The main techniques
used to search for and identify such compounds are high-
performance liquid chromatography (HPLC), which can also
be coupled to mass spectrometry (LC-MS), and gas
chromatography coupled to mass spectrometry (GC-MS).
Chromatography techniques allow for the separation of
constituents of mixtures via either their diffusion properties
in solvents (HPLC, LC-MS) or their diffusion through
capillary columns, which are coated with various surfaces
that are specifically chosen to interact with given functional
groups and heated with a given temperature ramp (GC-MS).
In the case of GC-MS, an additional step of derivatization is
common before injection of the samples into the column.
Derivatization results in the addition of a chemical group (or
“tag”) to the molecules of interest in order to make them more
volatile and obtain a better separation. When separation of
chiral compounds is required, derivatization with chiral tags
results in the formation of diastereomers that can be more
easily separated, even when using a nonchiral column.392

Another way to separate chiral compounds is to use a capillary
column coated with a chiral material.162,265−267,393,394 Finally,
chromatography techniques can be used together with high-
resolution mass spectroscopy for the identification of organics
in both laboratory and meteoritic samples.359,362,363,395−397

Such a GC-MS/high-resolution time-of-flight mass spectrom-
eter was onboard the lander of the Rosetta mission that landed
on Comet 67P/Churyumov−Gerasimenko.398

The use of HPLC and GC-MS resulted in the identification
of a wide variety of organic compounds in laboratory residues
produced from the UV irradiation of astrophysical ice
analogues, including amino acids,155,161−164,265,394,399 sugar
derivatives,392,400−402 as well as other organics of astro-
biological interest such as urea, hydantoin, and several
aldehydes.161,403,404 When small N-heterocycles and PAHs
are mixed with ices, pyrimidine-, and purine-based nucleo-
bases245,246,405−408 as well as N- and O-heterocycles244 are also
formed.
Fluorescence Microscopy. Fluorescence microscopy has been

used to study the physical properties of vesicles that
spontaneously form when residues are taken with a solvent.409

Using fluorescent molecules, such a study demonstrated that
vesicles could encapsulate and release these fluorescent
molecules when changing the conditions of the solvent. This
result has important astrobiological implications, as meteorites
have also shown to contain such vesicle-forming materials,
which could have served to make the first protocells and
facilitate the first chemical reactions that resulted in the
emergence of life on the primitive Earth410,411 (see sections
2.3.4.4 and 3.2).
NanoSIMS. Nanoscale secondary-ion spectrometry (nano-

SIMS) is often used to determine the isotopic composition and
distribution of samples. Although this technique has been
extensively used to analyze meteoritic samples,412−417 inter-
planetary dust particles (IDPs),418−421 and cometary samples
from the Stardust mission,422,423 it is only very recently that
this technique was applied to the analysis of laboratory organic
residues in order to verify whether isotopic fractionation of H,
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N, O, and C could be induced by photochemistry. Indeed,
meteoritic samples show distinctive isotopic enrichments in
heavier isotopes (mostly D and 15N), which are believed to
have a circumstellar or interstellar heritage424−429 (see section
2.5). Preliminary experiments studying the effect of irradiation
on astrophysical sample analogues showed measurable
deuterium enrichment in residues that were produced from
the UV irradiation of astrophysical ice mixture analogues,
followed by the irradiation of the residues themselves with UV
and X-ray photons.430,431 However, these results must be
repeated and confirmed to establish to what extent photo-
chemistry can play a role in the isotopic fractionations
observed in meteorites.
2.3.4.3. Theoretical Methods. The main challenge for the

theoretical calculations of reactions between gas-phase and
condensed-phase species and formation mechanisms of the
resulting products is to find the correct balance between
accuracy and affordability of the calculations. Ab initio
quantum chemical methods are suitable for computing
structures, energies, chemical reaction pathways, UV−visible,
IR, and microwave spectroscopic parameters, as well as
reaction rate constants among others. For small- to medium-
size molecules, these parameters have been shown to be
comparable in accuracy to experimental data. For molecules
that are up to about 15 atoms, coupled cluster theory with
singles and doubles, and perturbative triples CCSD(T)
excitation is considered to be reliably accurate. For systems
larger than these, CCSD(T) becomes prohibitively expensive,
and other more approximate methods such as density
functional theory (DFT), for which a suite of functionals

tuned for specific problems are available, and Møller−Plesset
perturbation theory methods are usually required. Typically,
B3LYP, a widely used hybrid density functional with Becke’s
three-parameter exchange432 along with Lee, Yang, and Parr’s
correlation functional433 provides a good balance between
expense of the calculation and accuracy for large systems but is
not as good to simulate non-covalent interactions and calculate
energy barriers for transition states. More modern functionals
such as the ωB97X-D, ωB97M-V, and M06-2X functionals
provide overall better performance and are used for these
calculations. Moreover, as range-separated functionals, they
reduce the self-interaction error434,435 and are thus suitable to
describe radical cations. To model the effect of an extended ice
matrix environment, a conductor-like solvent model C-
PCM436 from the class of polarizable continuum models
(PCM)437 is used. Specifically, an implementation that ensures
continuous potential energy surfaces as a function of changes
in molecular geometry is most suitable.438,439 In this model,
the bulk is represented as a polarizable medium characterized
by its dielectric constant, ε. The solvent dielectric represents
the condensed phase and enables the study of the effect of the
solvent.

2.3.4.4. Examples of Ice Irradiation Products. In the
sections below, we discuss some of the classes of compounds
of astrobiological interest that can be produced when
astrophysical ice analogues are exposed to radiation. Residues
formed from the irradiation of astrophysically relevant ice
mixtures at low temperature are made of hundreds if not
thousands of organic molecules.24 Because of the extreme
difficulty to identify all these compounds, a different approach

Figure 13. GC-MS chromatogram of an organic residue produced from the UV irradiation of an H2O:CH3OH:NH3:CO:CO2 (2:1:1:1:1) ice
mixture at 12 K that was acid hydrolyzed and derivatized before analysis. It shows the identification of 16 amino acids and several other organic
compounds in one same residue. Reproduced with permission from ref 162. Copyright 2002 Nature Research.
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was used. Instead of trying to identify all compounds present in
the residues, analytical methods were set up to search for the
presence of specific compounds, no matter how abundant or
representative of the whole residues these compounds were.
Amino Acids. The first family of compounds that was

extensively searched for in such residues is the amino acids
because (i) as the building blocks of proteins in all terrestrial
life they are biologically and astrobiologically relevant, (ii) they
are found in primitive meteorites, both proteinic and
nonproteinic,440−450 and (iii) analytical techniques optimized
to search for them were already existing.
Residues produced from the UV irradiation of ice mixtures

containing H2O, carbon sources such as CH3OH, CO, CO2,
and/or CH4, and nitrogen sources such as NH3 or HCN were
shown to contain a wide variety of amino acids, including both
proteinic and nonproteinic amino acids in measurable
abundances.155,161−164,265−267,394 These amino acids were
shown to be produced from photoprocesses in the ices rather
than resulting from biological contamination in several distinct
ways. First, the residues were found to contain nonproteinic
amino acids with abundances comparable to proteinic amino
acids of similar molecular masses; terrestrial biological
contamination would not have contained comparable concen-
trations of nonproteinic amino acids. Second, the distribution
of these amino acids by molecular mass/size does not follow a
biological pattern; instead, laboratory residues display an
amino acid distribution in which glycine, the smallest amino
acid, is by far the most abundant, and the abundance of larger
amino acids decreases exponentially with their molecular mass,
as expected for a nonbiological distribution in which larger
molecules are build up from smaller precursors. Third, these
experimental studies include a number of control experiments
that demonstrated that no amino acids were made when either
the ice or the radiation source were omitted, while all other
experimental protocols were strictly adhered to. Finally, in
many cases, experiments were carried out in which the starting
ices were isotopically labeled with 13C, 15N, and/or 18O, and it
was shown that the resulting amino acids were isotopically
marked appropriately.
Up to 16 amino acids, both proteinic and nonproteinic, were

found in one single residue162 (Figure 13). Although starting
with simple organic compounds such as CH3OH and CH4 as
carbon sources in the starting ice mixtures along with H2O and
NH3 typically led to larger amounts of amino acids in the final
residues,155 using only CO2 as a carbon source also resulted in
the formation of a wide variety of amino acids.163 Interestingly,
the irradiation of a mixture of naphthalene (C10H8), the
simplest polycyclic aromatic hydrocarbon (PAH), and
H2O:NH3 ices with 4−45 eV photons (UV/EUV range) also
resulted in the formation of several amino acids although their
distribution was different from other residues, as they showed
high abundances of amino acids containing aromatic rings.399

Therefore, the formation of amino acids from the UV
irradiation of ice mixtures is chemically robust in the sense
that it only requires that the starting mixtures consist of C, H,
O, and N atoms.155,164 Finally, a few studies reported the
detection of simple dipeptides in laboratory ice photolysis
residues.363,451 These dipeptides include glycylglycine (Gly-
Gly), glycylalanine (Gly-Ala), glycylserine (Gly-Ser), and
leucylalanine (Leu-Ala).
The distribution of amino acids in laboratory residues is

comparable to the distribution of amino acids identified in
meteorites; although the variety of meteoritic amino acids is

significantly wider, with more than 70 different amino acids
identified to date.443,448 Interestingly, some meteoritic amino
acids have been shown to display small L-enantiomeric
excesses.444,446,447,452 Several hypotheses have been proposed
to explain the origin of such excesses via parent body
processes,453,454 but no clear link has been established with
the fact that all proteinic amino acids in biological are L-
enantiomers. However, the distribution and absolute concen-
tration of amino acids can vary widely from one meteorite to
another due to processes taking place in the meteorites’ parent
bodies (mostly asteroids) such as aqueous alteration and
thermal metamorphism.455,456 Indeed, the distribution of α, β,
and γ-amino acids seems to be correlated to the meteoritic
group of the carbonaceous chondrites in which they were
identified (CM, CI, CV, CO, CR), which is itself correlated to
the level of aqueous alteration and thermal metamorphism
experienced by the parent body.450,454,457 In any case, the
similarities between the distribution of amino acids in
laboratory residues produced from the UV irradiation of
astrophysical ice analogues and the distribution of meteoritic
amino acids support a scenario in which photoprocessing of
ices in cold astrophysical environments is a plausible source for
meteoritic organics.
Theoretical calculations of formation of amino acids starting

from astrophysically relevant precursors mainly focused on the
gas-phase synthesis of small amino acids such as glycine,
alanine, and serine and involved the Strecker reaction as well as
Becherer−Berg reactions.458−462 Some studies have also used
DFT calculations to examine the formation of amino acids
starting from methyleneimine in both gas- and condensed-
phase ices.463,464 Finally, one theoretical study investigated the
formation of glycine in dense clouds that are intermittently
heated and pressurized due to shocks.465

Sugars and Related Compounds. Another family of organics
that are important for biology and astrobiology and have been
searched for in laboratory residues are sugars and sugars
derivatives. Sugars are carbohydrates that are omnipresent in
modern biology, as they are used as building blocks for RNA
(ribose) and DNA (2-deoxyribose), cellulose, cell walls, but
also food for microorganisms, as well as energy storage in the
form of glycogen and starch.466,467 Sugar derivatives such as
sugar alcohols and sugar acids, collectively referred to as
“polyols”, are also widely present in modern biological
structures and processes. For example, glycerol is the structural
backbone of triglycerides, an important class of lipids and main
constituents of body fat in humans, other vertebrates, and
vegetable fat.467,468 Other variants of polyols include
deoxysugar derivatives such as 2-deoxyribose, the sugar used
in DNA.
Like amino acids, sugar derivatives have been found in

carbonaceous meteorites such as Murchison, Murray, NWA
801, and NWA 7020 and include sugar alcohols, sugar acids,
sugars, sugar diacids, and deoxysugar acids.469−471 Abundances
of meteoritic sugar derivatives range from 15 ppm for glycerol
(3-carbon sugar alcohol) and 9 ppm for glyceric acid (3-carbon
sugar acid),469 down to 25−180 ppb for ribose and its isomers
(5-carbon sugars),471 indicating that the total abundance of
sugar derivatives in meteorites is typically higher than the total
abundance of amino acids. In addition, like in the case of
meteoritic amino acids, several meteoritic sugar acids have
shown to display enantiomeric excesses.470 Although the
mechanisms leading to these enantiomeric excesses in
meteoritic organics have not been determined, scenarios
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have been proposed.472 Several of these scenarios involve a
molecular symmetry breaking induced by circularly polarized
light (CPL),265−267,473−479 while other proposed scenarios
involve magnetic fields.480 However, it is not clear at which
stage (molecular cloud, protosolar nebula, Solar System) such
a symmetry breaking took place and whether meteorites’
parent body processes such as aqueous alteration were
involved in the creation and/or amplification of the
enantiomeric excesses measured in meteoritic amino acids
and sugar derivatives.481

In addition, like amino acids, sugar derivatives are expected
to be abundantly formed from the UV irradiation of
astrophysically relevant ice mixtures. However, the search for
polyols in laboratory residues is very recent because, unlike
amino acids, the sugar derivatives include a large variety and
number of compounds, which include all aldose sugars, ketose
sugars, their sugar alcohols and sugar acids variants, all their
diacids variants, and all their deoxy variants.469,481 In addition,
most of polyols with four carbon atoms or more can exist in
linear forms but also in five-member ring (furanose) and six-
member ring (pyranose) cyclic forms, each with two possible
anomers (α or β) depending on the orientation of one −OH
group. Finally, a large majority of polyols are chiral
compounds, i.e., they exist in two enantiomeric forms that
are mirror images of each other, doubling again the number of
possible structures for most sugar derivatives.470 These
analytical challenges could be overcome only recently thanks
to specific protocols and better instrumentation, leading to
protocols allowing for a more systematic search for sugar
derivatives in laboratory ice photolysis residues.400,401

The analysis of residues produced from the UV irradiation of
simple ice mixtures containing H2O and CH3OH, in the
presence or absence of NH3, showed the presence a wide
variety of sugars, sugars alcohols, sugar acids, and deoxy
variants of these containing 3−5 carbon atoms in detectable
amounts.392,400−402 Among these sugar derivatives, the RNA
sugar ribose392,402 and the DNA deoxysugar 2-deoxyribose392

were unambiguously identified by using 13C-labeled CH3OH
in the starting ices to confirm that ribose, 2-deoxyribose, and
all other sugar derivatives were indeed formed from ice
photoprocesses rather than due to biological contamination.
The distribution of polyols in residues produced from ices
containing H2O and CH3OH show that sugar alcohols are
formed with the highest abundances, followed by sugars and
sugar acids. The dominance of sugar alcohols suggests a
formation pathway involving the polymerization of CH3OH,
via •CH2OH radicals and/or ions,400,401 followed by their
oxidation into sugars and sugar acids. A formose-type reaction
mechanism, i.e., polymerization of formaldehyde H2CO,

482,483

was also suggested to explain the formation of sugar
derivatives.402 However, no experimental or theoretical
evidence were provided to support this mechanism.
The distribution of meteoritic sugar derivatives is somewhat

different from the distribution observed in laboratory residues,
as meteorites contain mostly sugar alcohols, sugar acids, sugar
diacids, deoxysugar acids, and smaller quantities of sug-
ars.469,471 This discrepancy may result from several factors.
First, the laboratory residues in which sugar derivatives were
identified were all produced from the UV irradiation of ice
mixtures containing H2O and CH3OH as the only carbon
source,392,400−402 while astrophysical ices are known to contain
other carbon sources such as CO, CO2, CH4, H2CO, and
HCN.3,4,33,87,308,310 The contribution of these compounds on

ice photochemistry may affect the distribution of the resulting
sugar derivatives. Another factor that may have played a role is
the effect of aqueous alteration and thermal metamorphism in
asteroids, i.e., meteorites’ parent bodies.455,456 Such parent
body processes are known to significantly affect the
distribution of amino acids in meteorites,450,453,454,457 and it
is reasonable to assume that they also significantly affect the
distribution and relative abundances of other organic
compounds including sugar derivatives.

HMT and Related Compounds. One of the first molecules to
be uniquely identified in the population of products from ice
irradiation studies was hexamethylenetetramine (Figure 14,
C6H12N4; hereafter referred to as HMT).23 HMT is highly
soluble in water and polar organic solvents and has an
adamantane cage-like structure with “corners” consisting of
nitrogen atoms and “edges” consisting of methylene (−CH2−)
bridges.
HMT is one of the most abundant products formed when

ices containing C, H, O, and N are irradiated at low
temperature and warmed.23,228,317,318 In laboratory residues
produced from the UV irradiation of interstellar ice analogues
containing H2O, CH3OH, NH3, and CO, the column densities
of HMT produced were typically slightly more than 1% of the
original ice’s total column density.23 Because only about 5% of
the original ice’s column density usually ends up in the
refractory residues recovered at room temperature, this
suggests an HMT abundance on the order of tens of percent
in the residues. Subsequent studies have demonstrated that
numerous HMT variants, in which one of the peripheral H
atoms on the HMT skeleton is replaced with another
functional group, are also made during these experiments, for
example, HMT-CH2OH (Figure 14).319,484

This family of molecules is of interest for several reasons.
First, HMT is known to produce a multitude of new organics
under photodegradation,23,485,486 thermodegradation,487 hy-
drothermal degradation,488 and acidic hydrolysis.489 Many of
these products (e.g., amino acids, nitriles, and a variety of N-
heterocycles) are of astrobiological interest. The degradation
products of other HMT variants are not currently known, but
it is likely that the degradation of other HMT variants produce
similar products to those from HMT, i.e., methylamines,
methane, ammonia, oxides of carbon and nitrogen, N-
heterocycles, and a wider range of amino acids, plus additional

Figure 14. The structures of hexamethylenetetramine (HMT) (left)
and HMT-methanol (right). HMT and variants that consist of HMT
with a hydrogen replaced by a different functional group are believed
to be major products of the irradiation of many astrophysical ice
analogues.
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products unique to the composition of their side groups. Also,
HMT has been proposed as a source for the CN and HCN
observed in comets.486

Finally, HMT and its variants may be detectable in space,
both because they are expected to be abundant products and
because all the members of this family share the common
HMT cage as a major part of their structure. Therefore, they
produce a number of IR bands that fall at similar positions and
have similar strengths. Theoretical calculations of HMT and
HMT variants with different functional groups have been
performed using ωB97X-D functional together with a
correlation-consistent polarized triple-ζ (cc-pVTZ) basis set.
These substituted HMT molecules include HMT-OH, HMT-
NH2, HMT-CH3, HMT-CN, HMT-OCN, HMT-OCH3
HMT-CH(OH)CHO, and HMT-NHCHO, for which struc-
tures and vibrational spectra were computed.490 HMT itself is
symmetric and does not possess a permanent dipole moment
and thus does not have a pure rotational spectrum. In contrast,
HMT-CH2OH and other variants may be detectable in space
because they are abundant products, because they are not as
symmetric as HMT thanks to the presence of the side groups,
and therefore possess a nonzero dipole moment, and because
all the members of this family share the common HMT cage
which produces a number of IR bands that fall at similar
positions and have similar strengths, making them easier to be
detected in space as a family.490

POM and Related Compounds. One of the most abundant
intermediary products that is formed by the irradiation of
i n t e r s t e l l a r i c e a n a l o g u e s i s f o rm a l d e h y d e
(H2CO)

23,215,228,491−494 and is seen in actual interstellar
ices.493,495,496 It is formed by both H addition to abundant
CO497−502 and through photodegradation of abundant
CH3OH.

227,494,503,504 H2CO is highly reactive, and warming
of ices that contain H2CO usually results in its polymerization,
of which polyoxymethylene (POM; chemical formula:
[CH2O]n) and related compounds are the most common
detected products.215,317,492,505,506 Polymerization is greatly
aided by the presence of NH3, and even small traces of NH3
(NH3/H2CO > 0.005) are sufficient to convert >40% of the
H2CO into organic residues. Although POM is made via
polymerization of pure H2CO, the reaction of H2CO with
other compounds such as H2O, CH3OH, and NH3 will result
in the production of POM chains in which some of the end

groups and peripheral H atoms of POM are replaced by −OH,
−COOH, −CH3, and −NH2 groups.23,228 POM has been
proposed as the parent molecule of the H2CO observed in
comets.507,508

Amphiphiles. The presence of amphiphiles in ice irradiation
residues is of considerable interest for astrobiology because this
class of compounds can self-assemble when placed in liquid
water into vesicular structures (Figure 15). Such structures
could play key roles in the early stages of the origin of life.509

If the organic residues produced from the irradiation of ices
containing molecules like H2O, CH3OH, NH3, and CO are
placed in water, portions of the material spontaneously self-
assemble into vesicular structures (Figure 16).409,510 The
spontaneous formation of vesicles indicates the presence of
amphiphilic compounds in the residues. Separation of the
residues into aliquots using HPLC yields multiple fractions
which form vesicles, indicating that there the vesicles are not
being made by a single amphiphilic compound but by a family
of such compounds. These vesicles are also shown to fluoresce
under UV light, but it is not clear whether the fluorescence is
caused by the amphiphiles themselves or by fluorescent
molecules incorporated into the vesicle walls.409 The vesicular
structures made from the residues are capable of trapping dyes

Figure 15. Because long-chain amphiphiles have both a hydrophilic “head” and a hydrophobic “tail”, they can self-assemble into structures that
maximize contact of the heads with surrounding water and minimize contact of the tails with surrounding water. This can lead to the formation of
bilayers or more complex structures that wrap on themselves to form vesicular structures.

Figure 16. Images of vesicular structures formed when (a) residues
created by the irradiation of astrophysical ice analogues, and (b)
soluble organics extracted from the primitive meteorite Murchison,
are put in liquid water. Adapted with permission from Figures 4 and 6
of ref 409. Copyright 2001 National Academy of Sciences.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.9b00560
Chem. Rev. 2020, 120, 4616−4659

4633

https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00560?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00560?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00560?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00560?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00560?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00560?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00560?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00560?fig=fig16&ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.9b00560?ref=pdf


in their interiors via successive cycles of wetting and drying,
i.e., these structures are not simply droplets of immiscible
materials but have interior volumes.409 Wetting/drying cycles
of this sort have been proposed as a probable mechanism by
which relatively impermeant molecules could be captured by
membranes in prebiotic environments.511

Similar vesicular structures are made when the soluble
fractions of some primitive meteorites, such as the carbona-
ceous chondrite Murchison, are placed in water (Figure
16).410,411 However, it is not known what, if any, structural
similarities there may be between the amphiphiles found in
primitive meteorites and those observed in laboratory
irradiation residues.409 Indeed, the molecular compositions of
the amphiphiles both observed in meteorites and made via ice
irradiation and warm-up are currently unknown, but it is
extremely unlikely they resemble the lipids used in modern
biological membranes. Nonetheless, their presence in
abundance in meteorites and laboratory ice photolysis residues
suggests they could play a key role in the early development of
life on planets.509

Quinones and Other Functionalized PAHs. As noted earlier,
polycyclic aromatic hydrocarbons (PAHs) are among the most
abundant molecules seen in space and are found in a wide
variety of astrophysical environments.2,8−10 At the low
temperatures found in interstellar dense molecular clouds,
PAHs are expected to be efficiently frozen out of the gas phase
into icy grain mantles on more refractory dust grains.239 Once
incorporated into astrophysical ices, PAHs can participate in
the same irradiation-driven chemistry processes as the other
simpler molecules present, namely H2O, CO, CH3OH, NH3,
etc. Because of the relatively high stability of the aromatic
skeletal structure of PAHs, much of the chemistry associated
with the radiation processing of PAHs in mixed molecular ices
involves the replacement of peripheral H atoms with other
functional groups159,235−237,241 (Figure 17). The exact reaction
path(s) for the formation of functionalized PAHs are not
known, although it is likely that many of the paths involve
PAH cations as intermediaries, as PAH cations are efficiently
made when PAHs are irradiated in H2O-rich ices.128,130,207−214

Because H2O and, to a lesser extent CH3OH, are abundant
in interstellar ices, it is not surprising that the peripheral
addition of O atoms to PAHs in the form of O and −OH
groups is common and that quinones and aromatic alcohols are
major products.159,235−237,241 In addition, when “bays” are
present in the peripheral structure of the PAH, bridging O
atoms result in the formation of aromatic ethers.159,237 The

formation of quinones is of particular interest because this class
of molecules play essential roles in biochemistry. For example,
the UV photolysis of the two-ring PAH naphthalene in H2O
ice produces 1,4-naphthoquinone as an abundant product.236

Naphthoquinones perform key biochemical functions, such as
electron transport and sulfur reduction, in organisms all across
the tree of life.512,513 In particular, 1,4-naphthoquinone is the
structural backbone for several biomolecules, often referred to
as menaquinones, including the vitamin K family, which
consist of 2-methyl-1,4-napththoquinone derivatives, and are
known for their role in blood coagulation and in binding
calcium to bones and other tissues.514

Heterocycles and Nucleobases. Another family of organic
compounds that are of great astrobiological interest and that
are found in both meteorites and laboratory residues is
heterocycles and functionalized heterocycles, including nucle-
obases. Heterocycles are cyclic aromatic hydrocarbons in
which one or several of the carbon atoms constituting the
molecular backbone are substituted with heteroatoms, i.e.,
nitrogen and/or oxygen atoms. Nucleobases, the building
blocks of the genetic material in RNA and DNA, are
functionalized nitrogen heterocycles (hereafter, N-hetero-
cycles) based on two molecular backbones: pyrimidine
(C4H4N2) and purine (C5H4N4).
N-Heterocycles have been detected in abundance in

meteorites,121−127 indicating that they can be formed under
totally abiotic conditions. However, despite the extensive
search for such N-heterocycles in astrophysical environments
in the gas phase, they have not been found to date,117−120 and
only an upper limit for the abundance of pyrimidine could be
derived from these observations.119 Nevertheless, because of
their abundant presence in meteorites, several mechanisms for
their formation in astrophysical environments have been
proposed, both experimentally and theoretically. One proposed
mechanism involves a pathway similar to that for the formation
of PAHs, i.e., the condensation of three acetylene (C2H2)
molecules in the gas phase,515,516 in which one or several of
these C2H2 have been replaced with HCN or HNC.116,517,518

Other proposed mechanisms include the pentamerization of
HCN into the purine base adenine.519,520 Recent experiments
have also shown that both N- and O-heterocycles can form
from the substitution of carbon atoms in the backbone of
PAHs with nitrogen and oxygen atoms when small PAHs such
as benzene and naphthalene are mixed with H2O + NH3 ices at
low temperature (<20 K) and subjected to UV radiation,244

although the exact molecular mechanism has not been
determined. These experiments resulted in the formation of
pyridine (C5H5N) from the substitution of carbon atoms with
N atoms in benzene (C6H6), as well as quinolines (C9H7N)
and coumarin (C9H6O2) isomers from the substitution of
carbon atoms in naphthalene (C10H8) with N and O atoms,
respectively. However, no pyrimidine or purine were detected
in these experiments.244

When the N-heterocycles pyrimidine and purine are present
in laboratory astrophysical ice analogues dominated by H2O
and containing NH3 and CH4 and are subjected to UV
radiation at low temperature, all the canonical nucleobases
used in modern biology as genetic material for RNA and DNA,
namely uracil (RNA), cytosine (RNA/DNA), thymine
(DNA), adenine (RNA/DNA), and guanine (RNA/DNA),
as well a number of their isomers, can be formed.245,246,405−408

Finally, a very recent study showed for the first time that
several pyrimidine- and purine-based nucleobases can be

Figure 17. The irradiation of PAHs in mixed-molecular ices can result
in the substitution of peripheral H atoms with a multitude of different
chemical functional groups.
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f o rm ed f r om t h e UV i r r a d i a t i o n o f s imp l e
H2O:CO:NH3:CH3OH = 5:2:2:2 ice mixtures at 10 K,363

demonstrating that all building blocks of modern biological
compounds can form from the UV irradiation of simple ice
mixtures under astrophysical conditions.
All of these experimental results on the formation of N-

heterocycles and nucleobases, together with their presence in
meteorites, highlight the complexity and the important role of
ice photochemistry in the formation of complex organic
compounds of significant astrobiological interest. In particular,
it was found that the UV irradiation of pyrimidine in realistic
astrophysical ice mixtures consisting of H2O + CH3OH + NH3
and H2O + CH3OH + CH4 + NH3 results in the formation of
large amounts of uracil, some cytosine, and very little
thymine.408 These results, confirmed by quantum calcula-
tions,521 in which thymine may be a minority compound
among all the organics delivered to the early Earth via
meteorites,522−525 may explain why the first genetic material
for all life on Earth was based on RNA, which has uracil and no
thymine, and not DNA, which has thymine and no uracil. Such
a scenario leading to the RNA-world hypothesis has been
extensively discussed in the literature.526−528

Comprehensive quantum chemistry work has been per-
formed to unravel the chemistry of formation of the
pyrimidine- and purine-based nucleobases, e.g., uracil, cytosine,
thymine, adenine, guanine, as well as their isomers and other
variants, by simulating reactions in gas- and condensed-phase
environments when pyrimidine and purine are mixed with
H2O, NH3, and CH3OH ices.521,529,530 Challenges for the
theoretical calculations of the formation mechanisms of the
nucleobases is in optimizing the balance between accuracy and
affordability of the calculations. The sizes of these systems are
too large for more accurate coupled cluster methods, apart
from a few specific cases. These systems are better studied
using density functional theory (DFT) and Møller−Plesset
perturbation theory methods. Theoretical calculations starting
from acetylene and hydrogen cyanide and resulting in the
formation of pyrimidine and purine bases were carried out
under simulated gas-phase conditions that are more relevant to

stellar winds from aging stars (section 2.1) and dense
molecular clouds (section 2.3).116,518 DFT and Møller−Plesset
perturbation theory methods (see section 2.3.4.3) were used to
study systems in which condensed-phase purine and
pyrimidine were mixed in astrophysical ice analogues and
subjected to ionizing radiation, resulting in the formation of
nucleobases521,529,530 (Figure 18).
The calculations reveal that (i) the formation of the

nucleobases uracil, cytosine, thymine, adenine, and guanine is
energetically and kinetically favorable, (ii) the gas-phase
mechanism of their formation is ineffective, and the presence
of several water molecules is necessary, so that such reactions
must take place in condensed-phase H2O, (iii) mechanisms
involving a cationic route in which the purine or pyrimidine
cation reacts with photoproducts from ice photolysis should
dominate, and (iv) the cationic formation mechanism is
facilitated by (and only by) an H2O matrix. Therefore, in the
reactions taking place in these experiments, the H2O ice matrix
plays two important roles: it is a supplier of reactants (H atoms
and •OH radicals), and it serves as a catalyst by solvating the
products. However, the •OH radicals generated in these
systems inhibit reactions between pyrimidine/purine with
other reactants such as methyl or amino groups from the
photodecomposition of CH3OH and NH3, respectively.
Quantum chemical calculations predict that the formation of
uracil and cytosine from pyrimidine in ices are rather easy,
while the formation of thymine is not because it requires one
additional reaction step and because •OH radicals compete
with •CH3 radicals to react with pyrimidine,521,529 which is
supported by experimental data.405−408 Similarly, adenine,
guanine, isoguanine, hypoxanthine, and a whole variety of
other purine-related products have been predicted to be
synthesized based on gas-phase as well as condensed-phase
calculations of purine mixed in astrophysical ice analogues530

and supported by experiments.245,246

2.4. Protostellar Disks and the Delivery of Organics to
Planets

When the concentration of material in a dense molecular core
reaches a critical value, it can collapse to form a new star.90,531

Figure 18. All of the five nucleobases and many of their isomers can be produced by side group addition reactions when pyrimidine (left) and
purine (right) are exposed to ionizing radiation while frozen in ices containing simple molecules known to be in astrophysical ices.
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Angular momentum in the material in the core causes the
cloud to flatten as it collapses, and this creates a protostellar
disk of dust, gas, and ice surrounding the forming protostar
(Figure 19).532,533 Ultimately the radiation and stellar jets

associated with the formation of new stars leads to the
disruption of the original interstellar cloud.534 The dust and
gas densities in the protostellar disks that surround forming
stars are significantly higher than in the general dense cloud
medium, and, as a result, disks are expected to be good
environments for additional chemistry.27

2.4.1. Conditions in Protostellar Disks. Physical and
chemical conditions in protostellar disks vary over wide ranges,
depending on location within the disk, i.e., the distance from
the central forming star, the vertical scale height within the
disk, and time. For example, conditions at the inner edge of the
disk near the forming star can involve temperatures high
enough to vaporize rocks, while the midplane of the middle
and the outer parts of the disk can be at temperatures as low as
10 K.27 Temperatures generally increase as you approach the
central star, and at any given distance from the star they
increase with increasing vertical scale height within the disk.
Given this wide range of environments, many of the

chemical processes described for interstellar clouds can also
happen in disks at some locations and times. For example, gas-
phase and gas−grain reactions much like those that can occur
in dense molecular clouds are expected to also occur in
protostellar disks.27,535 Because of the higher densities and, in
some locations, temperatures, many of these processes occur at
an accelerated rate compared with interstellar conditions.
The effects of radiation are somewhat different in

protostellar disks, however. Because of the shorter time scales,
relatively high densities, and optical depths of these disks
during their early stages, radiation effects are largely confined
to the inner edge and surface portions of the disk. Because
disks flare in the vertical direction with increasing distance
from the central star (Figure 20), most of their surfaces are
exposed to radiation from the central star as well as from the
general surrounding radiation field. Mixing of materials within
the disks also results in materials cycling between zones having
different temperatures and radiation fluxes, which can result in
different materials experiencing very different thermal and
radiation processes.
In the sections that follow, we concentrate on those

chemical processes that differ in some significant way from
similar processes taking place in dense molecular clouds.

2.4.2. Ice Photochemistry. As noted above, materials in
protostellar disks are in constant dynamic motion. In addition
to orbiting the central protostar, turbulence, and the exchange
of angular momentum also cause them to move vertically in
the disk and to move in toward or away from the central

Figure 19. An image of the disk surrounding the star HL Tau. HL
Tau is a very young star surrounded by a disk of gas and dust. The
ring gaps in the disk are thought to be associated with the formation
of larger bodies in the disk. Credit: ALMA (NRAO/ESO/NAOJ); C.
Brogan, B. Saxton (NRAO/AUI/NSF).

Figure 20. Protostellar disks contain a wide variety of environmental conditions that change as the disk evolves. Temperatures can range from as
low as ∼10 K in the midplane of the disk far from the star up to temperatures near the central forming star that are hot enough to vaporize rock-
forming minerals. Similarly, the radiation field is very low in the disk midplane but grows more intense as the inner edge or surface of the disk are
approached. Reproduced with permisison from ref 27. Copyright 2013 American Chemical Society.
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protostar.29 As a result, small grains within the protostellar disk
can follow semistochastic paths that span large portions of the
disk. As particles move vertically in the disk, they can undergo
multiple episodes in which they condense volatile ice mantles
near the midplane of the disk cycling, carry these ices up to
heights where the optical depth of the disk is small enough to
allow photolysis of the ices to occur, and then descend again to
accumulate more ice, and so on. Modeling of this process
suggests that for typical small grains in the disk, ice mantles can
be exposed to radiation doses that exceed those in typical
dense molecular clouds by orders of magnitude29 (Figure 21).

Thus, all of the same ice irradiation processes described for
dense clouds are expected to occur in protostellar disks,
although they may process a higher fraction of volatiles with
higher total radiation doses over shorter time scales. With the
exposure of more molecules to large numbers of photons, it is
possible that ice irradiation in disks could lead to the formation
of larger and more complex products than is typical in dense
clouds.
2.4.3. Post-Sublimation Irradiation Processes. The

movement of grains in protostellar nebulae is expected to
result in many particles being lofted to sufficient heights above
the disk midplane that they will warm to temperatures
sufficient to result in the sublimation of any ice mantles they
may have.29 This will allow ions and radicals made within the
ices to find each other, interact, and form more complex
organic species. While some of these grains will subsequently
descend toward the disk midplane and reaccumulate new ices,
some particles will remain at disk heights with smaller optical
depths, where the previously formed organics will continue to
be exposed to ionizing radiation (Figure 21).
Laboratory experiments have been carried out to imitate

these additional exposures by exposing previously made ice
photolysis residues to additional UV or X-ray radiation. These
experiments show that additional radiation exposure of the
residues results in the elimination of hydrogen and the
conversion of aliphatic bonds into aromatic bonds.229 C,N,O-
XANES spectra of these reirradiated residues look very similar
to those of the insoluble organic material (IOM) that

dominates the carbonaceous fraction of primitive meteorites,
suggesting that this process may be responsible for processing
much of the C-containing components of meteorites.
Furthermore, experiments of irradiation of laboratory ice
photolysis residues with additional X-ray and UV/EUV
photons showed measurable D fractionations,430,431 indicating
that protostellar disk processes may also be related to the
isotopic anomalies seen in IDPs, meteorites, and comet
samples (see section 2.5).

2.4.4. Implications for Meteoritic Materials. The many
processes described previously (circumstellar, interstellar, and
protostellar) all play a role in the formation and evolution of
organic materials that can ultimately end up being incorpo-
rated into aggregating planetesimals in the forming planetary
system. In the case of our own Solar System, these materials
can now be found in comets and asteroids and can be collected
on Earth in the form of interplanetary dust particles (IDPs)
and meteorites. Thus, it is reasonable to compare the materials
expected from the previously described processes with the
organic materials in cosmic dust, meteorites, and samples
returned by spacecraft from comets and asteroids. Items in
which interstellar and protostellar processes may play key roles
in establishing some of the more prominent characteristics of
meteoritic organics, including the abundance of insoluble
organic material,345,391,396,536−546 the trapping of noble
gases,547−557 isotopic anomalies in D and 15N,418,558−561 and
the presence of molecules of astrobiological relevance that
could play key roles in the origin and evolution of
life.121−127,410,411,440−450,469,522−525 For additional discussion
about the nature of organics in extraterrestrial samples, see ref
472.

2.4.5. Delivery to Planetary Surfaces via Dust and
Meteorites. Once organic materials are incorporated into
small bodies like comets and asteroids in a new planetary
system, they can then be delivered to planets. The importance
of the arrival of these materials to subsequent chemistry on
planetary surfaces depends in large part on the circumstances
of their arrival. The collisions of entire asteroids or comets with
a planet are energetic events that will result in the destruction
of much of the organic materials in the impactor as well as
severely modify many of those on the planet, although some
parent body organics are expected to survive and the energy of
the impact can also create new compounds.562−565 Under such
circumstances, much of the molecular diversity of the original
impactor may be lost, although their constituent components
(H, C, N, O, etc.) will be added to the planet’s inventory. In
this case, the role of previous astrochemistry may largely only
be to take biologically important elements like H, C, N, and O
and convert them from simple molecules like H2, CO, etc., that
would not originally have been accreted by the planet and lock
them down in the form of more complex materials capable of
being collected into a comet or asteroid and subsequently
delivered to the planet. Under these circumstances, the main
importance of these materials is in establishing the total
reservoir of the biological elements of the planet.
However, much of the material accreted by a forming planet,

particularly in its later stages of formation, comes from the
accretion of smaller bodies in the form of dust and meteorites,
and this process continues long after the primary planetary
formation process is over. Even today, 4.5 billion years after its
formation, the Earth continues to accrete material in the form
of cosmic dust and meteorites, and the rate of accretion of
these types of objects was much higher in the planet’s early

Figure 21. Individual dust grains in protostellar disks move through
the disk as the disk evolves. Typical dust grains can make multiple
excursions between the disk midplane where low temperatures allow
ice mantles to form on the grain and the disk’s surface where these
ices can be irradiated and sublimed away. This figure shows an
example path for one of a large suite of particle trajectories described
in ref 29. The protostar is located at coordinates (0,0), and the blue
and green diamonds correspond to the particle’s starting and ending
locations, respectively.
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history.566 In the case of planets with atmospheres, the
accretion of dust particles and meteorites is a particularly
effective way of delivering premade organics to planetary
surfaces without destroying them522−525 (Figure 22). Indeed, it
is apparent from the study of contemporary interplanetary dust
particles and meteorites that complex organics can survive
through the accretion process (see, e.g., ref 472). Thus, at least
a portion of the molecular complexity produced by
preplanetary chemistry should be delivered to the surfaces of
young planets, which suggests that newly formed planets can
be expected to be seeded with complex organics of the types
described previously (section 2.3.4.4), including a multitude of
chemical species of astrobiological importance (see section 3).

2.5. Isotopic Effects

Nonterrestrial isotopic ratios are seen in many chemical
elements in extraterrestrial materials. Many of these are
associated with presolar grains found in extraterrestrial samples
that are due to nucleosynthetic processes associated with the
formation of dust in the circumstellar environments of aging
stars. These nucleosynthetic processes can yield distinctive,
nonterrestrial isotopic ratios in many elements, including C, N,
and O, that depend on the type of star and nucleosynthetic
processes responsible.14,15 However, in this paper, we will
concern ourselves only with isotopic effects associated with
chemistry, not nucleosynthesis, i.e., we will concentrate on
interstellar and protostellar chemical fractionation processes,
not stellar and circumstellar nucleosynthetic processes. In
particular, we will concentrate on D/H and 15N/14N
fractionations because these are the most common isotopic
anomalies seen in extraterrestrial materials like IDPs,
meteorites, and comet samples.418,558−561 Both the D and
15N enrichments appear to be carried by organic materials and
are often found concentrated in microscopic “hotspots” within
meteorites, IDPs, as well as Stardust samples.391,418,559−561

There are a number of gas-phase, gas−grain, and solid-state
processes occurring in space that can fractionate hydrogen and
nitrogen, most of which favor the accumulation of the heavier
isotope in the more complex products,567−569 although gas-
phase processes for 15N fractionation in organic materials have
recently been called into question, which will be discussed
below. The majority, but not all, of these processes occur at
very low temperatures, where the different zero-point energies
of the isotopes can result in significant fractionation during
reactions. In the sections below, we discuss the isotopic
fractionations that can occur in space via gas-phase, gas−grain,
and photolytic reactions.
2.5.1. Gas-Phase Chemistry. As indicated above, there

are many solar system materials that have been found to
contain very small “hotspots” of D and 15N enhancement
relative to the terrestrial abundance. The largest 15N enhance-
ment for meteoritic material has δ15N > 3000%560 where δ15N
= 1000 × [(15N/14N)x/(

15N/14N)⊕ − 1] and (15N/14N)⊕ is
the Earth’s atmospheric isotopic ratio of 0.003678,570 while
δ15N > 1000% has been observed in IDPs and Stardust
samples.418,559,561 Astronomers, astrochemists, and astrochem-
ical modelers have been trying to explain these excesses for
decades. Rodgers and Charnley571 obtained some promising
results from their chemical reaction network models for dense
molecular clouds at low temperatures based on 15N exchange
reactions that had been proposed earlier by Terzieva and
Herbst.572 These key exchange reactions are as follows:

EN N H N N NH15
2

14 14 15 14
1+ + + Δ+ +F (1)

EN N H N N NH15
2

14 14 14 15
2+ + + Δ+ +F (2)

where the exothermicities are ΔE1 = 0.23 kJ mol−1 and ΔE2 =
0.30 kJ mol−1. The exothermicities are very small, being driven
only by the difference in the zero-point energies of the N2H

+

entities in reactions 1 and 2. These very small exothermicities
are also why the exchange reactions 1 and 2 only become
important at very low temperatures. Rodgers and Charnley571

obtained values of δ15N > 3000% in the upper layer of
ammonia ice, with some models exceeding δ15N > 10 000%,
and they concluded that these results may help to explain the
15N hotspots seen in collected extraterrestrial materials.
However, Roueff et al.573 later published a paper where,
among other things, they examined the entrance channel for
reactions 1 and 2 (and similar reactions) using high level ab
initio calculations and, not surprisingly, found very large
barriers, on the order of ∼100 kJ mol−1, meaning that these
reactions would not proceed at low temperatures. Roueff et
al.573 also made a significant attempt to improve the zero-point
energies for the various isotopic exchange reactions including
anharmonic effects and updated ΔE1 and ΔE2 to be 30.4 and
38.5 K, respectively. Since then, Wirström and Charnley,574

and more recently Loison et al.,575 have revisited 15N
enhancement using their chemical reaction networks using
the corrections of the Roueff et al.573 study and have found no
significant 15N enhancement in N-containing species. Thus, it
now appears that neither ion−molecule nor atom−molecular
ion gas-phase chemical reactions can explain the significant 15N
enrichment that is found in the primitive solar system
materials.
It has been known for many years that D fractionation

occurs through ion−molecule reactions in the gas phase at low
temperatures.568,569 An example of how this process works can
be understood by considering the cyclopropenylidene
(c-C3H2) molecule. When a D+ is added to c-C3H2 through
an ion−molecule reaction, the c-C3H2D

+ cation forms, and
when that cation is involved in another ion−molecule
exchange reaction, the c-C3HD molecule is preferentially
formed. Deuterium enhancement in more complex molecules
occurs because the zero-point energy of the D-containing
molecule is smaller relative to the H-containing species, and
thus the D/H exchange reactions are exothermic, similar to
reactions 1 and 2.567,576,577 However, the D/H mass ratio is
essentially two, so the C−D, N−D, and O−D vibrational
frequencies are significantly lower than their C−H, N−H, and
O−H analogues, and thus the effect on the zero-point energies
is much larger. For example, Roueff et al.573 show that the
zero-point energy difference for CD/CH is 535.5 K, while that
for ND/NH is 621.6 K. However, the larger exothermicity in
D/H exchange reactions is not the reason these reactions
proceed at low temperatures while the 15N exchange reactions
do not. Instead, these reactions occur because in the D/H
ion−molecule exchange reactions it is really D+ and H+ that are
being exchanged so there is not a pair of electrons being
broken and formed simultaneously as must occur in the 15N
exchange reactions.
The other type of gas-phase reactions that can occur in D/H

exchange are exoergic reactions involving radicals. These can
still proceed at low temperatures provided there is no barrier,
or that any barrier is “submerged” below the reactants which
can occur when there is an initial association complex. As

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.9b00560
Chem. Rev. 2020, 120, 4616−4659

4638

pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.9b00560?ref=pdf


indicated, the exothermicity of all of these D/H exchange
reactions is still small, so they become more important and
lead to more significant fractionation at low temperatures,
generally as the gas temperature falls below ∼70 K.578

Finally, it is important to note that the astronomical
detection of deuterated molecules in the gas phase shows
that the abundance of multiply deuterated species relative to
singly deuterated species is sufficiently large to be difficult to
explain solely by gas-phase ion−molecule reactions. This
suggests that D enrichments seen in gas-phase molecules may
not be due solely to gas-phase chemical processes, and it is
generally assumed that some of the observed fractionations are
caused by separate grain-related processes (for example, gas−
grain reactions; see following section) that subsequently
liberate molecules into the gas phase.573,579

2.5.2. Gas−Grain Chemistry. Gas−grain chemistry is
expected to produce isotopic enrichments, in particular in
deuterium (D), in the icy mantles from the mass fractionation
that becomes significant at low interstellar temperatures (10−
100 K).567,580 In these environments, enrichment in heavier
isotopes is believed to result mainly from gas accretion
processes. At very low temperatures, chemical reactions are
mostly limited by the mobility of the accreting species, with
smaller species expected to be more mobile than larger ones.
Therefore, H atoms, that are adsorbed on the surface or
released from photoinduced bond breaking of hydrogenated
species, are expected to be the most mobile species. When two
H atoms meet and react, the resulting H2 molecule can desorb
from the grain, leading to a decrease in the hydrogen
concentration in the ice (indeed, this is believed to be the
primary formation process of molecular hydrogen in the
universe).143−148 Because deuterium is twice as heavy as
hydrogen, D atoms are less mobile, and thus less reactive,
decreasing the probability of D atoms subliming from the
grain, and therefore increasing the concentration of deuterium.
However, ice mantles may also contain atomic N, O, and C,

and hydrogen addition to these species results in the
production of simple hydrides like NH3, H2O, and CH4, and
these species can end up concentrating D relative to H. Models
of this process suggest that it can produce fractionations that
result in D/H ratios in the icy mantles as high as 0.1 for small
molecules such as H2O and CH3OH,

567,580−585 i.e., values that
are much higher than enrichments resulting from ion−
molecule reactions in the gas phase. Because the ices also
contain a larger proportion of the total mass of complex
molecules in dense clouds, this process may be one of the
major ones for producing D/H fractionations in dense clouds
(more details can be found in the citations provided).
A similar effect is likely to occur for other atoms, although

this effect may be significantly limited due to the small relative
differences between the mass of the isotopes for other elements
of interest (13C/12C, 15N/14N, 17O/16O, 18O/16O), their lower
abundances, and the fact that their most likely initial reactions
will be with hydrogen.
Finally, thermal and photoinduced desorption could also

result in an isotopic fractionation. Indeed, because heavier
isotopes have higher masses, their desorption efficiencies may
be lower, resulting in an enrichment in heavier isotopes on the
grains. Such an effect is likely to be more significant for D
enrichment, as deuterium is twice as heavy as hydro-
gen.583,586,587 Therefore, this process is expected to affect
more significantly molecules with a higher number of hydrogen

atoms, but it could also take place for heavier elements to a
smaller degree.588

2.5.3. Photolytic Chemistry. There are several photolytic
processes that occur in space that are expected to yield D
enrichments in more complex organic materials. Most, but not
all, require chemistry at low temperatures.
One process that does not require low temperature involves

unimolecular dissociation reactions in gas-phase PAHs that
absorb energetic photons.2,567,568,589 As noted earlier, the
CC multiple bonding and π electrons of PAHs makes them
much more stable against photolytic disruption in space than
most other molecules. This allows PAHs to survive in
astrophysical environments where other species would quickly
be destroyed, and explains why PAHs are one of the most
ubiquitously distributed and abundant classes of molecules in
the interstellar medium.2,8−10 However, while PAHs are
relatively immune to complete photodestruction by interstellar
UV photons, individual PAHs, particularly smaller ones, may
still absorb UV photons that contain more energy than they
can vibrationally accommodate and one or several bonds will
break. The most likely bonds to break are the peripheral C−H
bonds. Because of the zero-point energy difference between
C−D and C−H bonds, the rate of D loss from interstellar
PAHs by this process should be lower than that of H. Because
both H and D will return to this molecular site from the more
massive ambient gas phase, repeated processing is expected to
gradually enrich interstellar PAHs in D relative to the ambient
gas. At steady-state equilibrium, the fraction of peripheral D
relative to H is expected to be 3 times the local gas-phase ratio
of D/H, which can range from 10−5 to 10−3, in interstellar
photodissociation regions and, at least for small PAHs, in
dense clouds.2,567

This process differs from enrichment by ion−molecule and
gas−grain reactions in several ways. First, low temperatures are
not required to produce fractionations via this process. Second,
the extent of the D enrichment depends critically on the PAH
size and is expected to be most significant for PAHs in the
range of sizes between C10H8 (naphthalene) and C42H18
(hexabenzocoronene). Deuterium enrichment is not expected
in benzene because it is not stable in the interstellar radiation
field and because enrichment in PAHs having more than ∼40
carbon atoms is not expected due to the fact that larger PAHs
have large numbers of vibrational modes that can accom-
modate the maximum energy of typical interstellar UV photons
and are therefore stable against photolytic bond cleavage.
Deuterium enrichment of complex organics can also occur

during the irradiation of astrophysical ices in interstellar cloud
and protosolar disk environments. As noted earlier, many of
the molecular species that condense out into icy grain mantles
in cold environments may be previously enriched in D and/or
15N via processes such as gas-phase ion−molecule reactions
(section 2.5.1) and gas−grain reactions (section 2.5.2). Once
in the ice, these molecules can serve as a D- and 15N-enriched
reservoir from which other species can be themselves enriched.
As discussed in section 2.3.4, irradiation and warming of these
ices leads to the formation of new, more complex molecules.
Laboratory studies of astrophysically relevant mixed-molecular
ices in which some of the original species are D- or 15N-
enriched have shown that the D and 15N end up in many of the
reaction products.23,164,244,485,568,590,591 Thus, ice photolysis
can propagate previous fractionations into new, more complex
molecular species. Finally, processes such as the aromatization
of aliphatic compounds formed from photoprocessed ices at
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low temperature may also lead to an enrichment in D. Indeed,
aromatization of aliphatic carbon bonds drives H atoms away,
and at low temperature, this may result in a loss rate of H
atoms higher than the loss rate of D atoms, leading to an
enrichment in D. However, such processes have not been
observed experimentally to date.
At dense cloud temperatures and in the colder portions of

protostellar disks, PAHs will condense onto refractory dust
grains along with most other gas-phase species where they will
be subjected to the same radiation processing as the other ice
components (section 2.3.4.4). Laboratory irradiation simu-
lations of PAH-bearing interstellar ice analogues containing D-
enriched H2O show that UV photolysis results in rapid D
enrichment of the PAHs through aromatic D → H exchange,
D atom addition, and exchange through keto−enol tautomer-
ism.235 Each of these processes produce different compounds
with characteristic deuteration patterns and D labilities.568

Simple D → H exchange reactions result in D-enriched PAHs
in which the D resides in relatively nonlabile locations, while D
atom addition reactions result in D-enriched Hn-PAHs in
which the D resides in relatively nonlabile aliphatic rings
attached to aromatic rings. In contrast, enrichment via keto−
enol tautomeric exchange results in the D atoms being located
on rings in sites that contain oxygen atoms and that are
relatively labile. Deuterium enrichments produced in aromatic
species in this manner are expected to occur largely
independently from the PAH molecular size but should show
specific regiochemical behaviors.
Similar processes can happen for the propagation of 15N

enrichments in simple ice-phase molecules into more complex
organics. When PAHs are present in the ices, the 15N can be
passed along in the form of N-containing side groups
substituting for peripheral H atoms or can be substituted for
skeletal C atoms in the PAHs to form heterocycles.244 If
heterocycles are already present in the ice, photon-driven
exchange reactions can also swap N atoms between the 15N-
enriched ice and skeletal N in the heterocycles.244

The photolysis-driven isotopic processes described above for
ices involve the forward propagation of previous fractionations
into new, more complex molecular species. However, there is
some evidence that ice photolysis can also produce intrinsic
fractionations, at least for D. The organic residues resulting
from photoprocessing of interstellar/protostellar ice analogues
having normal terrestrial isotopic compositions have been
shown to contain bulk D enrichments, and, in several cases,
specific molecular products have been shown to be enriched in
D as well.592,593 The exact mechanism(s) that result in this
fractionation are not currently understood. It is known that the
irradiation of interstellar ice analogues results in the
production of H atoms that combine to form H2 that
subsequently escapes from the ice.594,595 If this H2 is
isotopically light, then this would result in an overall increase
in the D/H ratio in the remaining ice.
Finally, experiments have shown that when astrophysically

relevant organic materials are processed by ionizing radiation,
the resulting materials can show measurable D enrichments.
For example, electron irradiation of organic precursors having
an initial terrestrial isotopic composition have been shown to
produce D fractionations comparable to those seen in primitive
meteorites like Orgueil.596 Similarly, experiments in which
organic residues produced from the UV irradiation of realistic
astrophysical ice analogues were themselves irradiated with
extreme UV or X-ray photons showed measurable D

enrichments.430,431 The process(es) responsible for the
fractionations are not fully understood, but one possibility is
that the conversion of aliphatic carbon into aromatic carbon, as
was previously observed for residues subjected to X-ray
radiation on a scanning transmission X-ray microscope
(STXM),229 may result in the loss of H atoms in higher
proportions than D atoms via mass fractionation.
Interestingly, D enrichment can happen even in the absence

of organic compounds. For example, the electron irradiation of
thin films of amorphous silica, amorphous “serpentine”, and
pellets of crystalline muscovite have been demonstrated to
produce large H loss attended by moderate D enrichment of
the solid residue.597 The calculated fractionation factor is
consistent with a kinetically controlled fractionation during the
loss of hydrogen.
It is not currently known if the irradiation of interstellar ice

analogues can result in the production of intrinsic 15N/14N
fractionations.

3. IMPLICATIONS FOR ASTROBIOLOGY
This review has shown that chemical processes in astrophysical
environments result in the production of a wide variety of
molecules, most of which are organic in nature and many of
which are of direct interest for astrobiology, i.e., the study of
the origins, evolution, distribution, and future of life in the
universe.598 Although gas-phase chemistry in these environ-
ments does take place and leads to the formation of small
compounds, due to the very low densities in the ISM and the
high radiation fields likely to photodissociate newly formed
compounds, gas-phase chemistry is an inefficient process to
make complex molecules, even at the time scales of the lifetime
of molecular clouds. Chemistry of ices induced via ionizing
radiation on the surface of small, cold grains thus appears like a
more efficient way of forming new, more complex compounds
because species are closer to each other and can thus react
more efficiently with each other, and because ice matrices may
behave like a shield to newly formed molecules. At the low
temperatures of molecular clouds (typically, <20 K), reactions
are slow and limited by the diffusion of species through the ice
matrices. However, small species such as H hydrogen atoms,
which are created from the photodissociation of icy
components, including H2O, NH3, and CH3OH, are mobile
enough even at these low temperatures to react with other
species. Photoinduced ionization and bond breaking are also
more efficient in ice matrices compared with the gas phase
because, at low interstellar temperatures, some ions and
radicals can survive long enough to participate in chemical
reactions. Interactions with the ice matrix itself may help
stabilizing those reactive species. In addition, the presence of
radicals in ices does enhance the probability of forming more
complex molecules, as radical recombinations are typically
barrierless and thus can occur even at very low temperature
without any additional energy input.
Therefore, processing of ices with energetic photons and/or

particles is believed to be an important source for the organic
molecules that are incorporated into the Solar System as well
as probably in other planetary systems. Such organics are also
subjected to harsh radiation during the formation of the Solar
System, during the protosolar nebula stage. However, particles
inside the nebula are subjected to turbulent movements, from
the middle of the protoplanetary disk plane to the edges of the
disk and from the close neighborhood of the forming star to
the outskirts of the disk.29 During this stage that lasts several
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millions of years, particles experience a wide range of
temperatures and radiation exposure, up to several orders of
magnitude higher than the typical doses they are subjected to
in the ISM, in which ices can condense, be irradiated, sublime
away, expose newly formed species that are themselves
irradiated, recondense, and so on. Those cycles may lead to
the formation of robust, complex organic molecules that end
up in asteroids and that can then be delivered to planets via
meteoritic bombardment522−525 (Figure 22).

3.1. Compounds of Astrobiological and Prebiotic Interest

Among the wide variety of organic compounds produced from
ices processed by energetic photons and/or particles, several of
them constitute the fundamental building blocks of life on
Earth. They include amino acids (the building blocks of
proteins), nucleobases (the building blocks of the genetic
material), sugars and their derivatives (which play several roles,
from the building blocks of DNA, RNA, and cell walls, to
energy storage), amphiphiles (the building blocks of cell
membranes), and several other families of organic compounds.
All of these compounds are found in meteorites, supporting a
scenario in which they can form in astrophysical environments
and then be incorporated into Solar System objects such as
asteroids and comets. Laboratory experiments also support
such a scenario, as most of the soluble organics identified in
meteorites can form experimentally from the irradiation of ice
mixtures with compositions similar to those observed in
astrophysical environments.
However, it must be noted that the variety of organics

resulting from ice processing is much wider than the building
blocks actually used in modern terrestrial life. Indeed, although
only about 20 amino acids are used to build proteins in all life
on Earth, more than 70 amino acids have been identified in
primitive meteorites such as Murchison.443,448,599 Similarly,

several isomers and variants of the nucleobases and sugars used
in terrestrial life’s genetic material are present in meteor-
ites.123−126,469−471 In addition, ice processing by energetic
photons and/or particles in astrophysical environments is
largely limited to only making the building blocks of biological
structures and not the structures themselves. A mixture of
amino acids, for example, does not spontaneously react to form
functional proteins with a biological function, and sugars such
as ribose do not spontaneously react with phosphoric acid and
nucleobases to build RNA and DNA strands. The selection of
which organics were useful to build such organized structures
presumably happened at a later time in the history of our
planet and the evolution of life.

3.2. Organic Inventory on the Primitive Earth

Despite the complexity of modern biological systems on Earth,
even for the simplest microorganisms, it seems likely that life
on our planet did not start with the same degree of complexity
as we see now. Rather, it is believed that the first functional
biological molecules were made of a smaller number of
building blocks than what modern proteins and genetic
materials are made of, and that some of the building blocks
that were involved in these first functional molecules may have
been abandoned by life along the way, as life evolved in a
planetary setting into more and more complex forms.
For instance, it is commonly thought that the first genetic

material was very different from the modern one. In particular,
experiments showed that other polymeric structures such as
peptide nucleic acids (PNAs),600,601 threose nucleic acids
(TNAs),602,603 glycol nucleic acids (GNAs),604−606 as well as a
host of other possible candidates,607 could have played the role
of genetic backbone to which nucleobases were attached. Life
could have then progressively replaced these backbones with
other ones, either for stability/robustness reasons or because
their properties made them more functional for genetic
information storage or replication. Similarly, the nucleobases
that store the genetic information in modern DNA and RNA
may not have been all used in the first genetic material. Indeed,
experiments have shown that the UV irradiation of pyrimidine
in realistic astrophysical ice mixtures leads to the formation of
uracil and cytosine, two of the three pyrimidine-based
nucleobases used in modern life, but thymine is not as easy
to form under the same conditions.407,408,521 Interestingly,
thymine is used only in DNA, while uracil is used in RNA.
Furthermore, uracil was detected in carbonaceous meteorites
such as Murchison, while thymine was not.124,608 Therefore, if
abundant amounts of uracil and cytosine, but not thymine,
were delivered to the primitive Earth, this could have biased
the formation of RNA first over that of DNA. While this
hypothesis is difficult to verify, it is thought that the first
functional genetic material and proteins were based on RNA
(the “RNA world”), which supports such a scenario.526−528

Similarly, experiments in which purine is embedded in realistic
astrophysical ice mixtures led to the formation of adenine, one
of the two purine-based nucleobases used in modern life, but
guanine appeared to be difficult to form under the same
conditions.245,246 Instead, other purine-based nucleobase
variants such as isoguanine and hypoxanthine were shown to
form more efficiently than guanine, hypoxanthine being the
most abundant oxidized purine among all photoproducts. It is
interesting to note again that it was suggested that in primitive
versions of the genetic material, hypoxanthine, which is
efficiently formed from ice processing and found in

Figure 22. Vast amounts of material are constantly cycled between
various environments in our galaxy and the chemical processes in
these environments can form a wide variety of organic materials, some
of which are of astrobiological interest. Whenever a new star with a
planetary system forms, a fraction of this material ends up being
incorporated into solid bodies that ultimately end up being delivered
to newly formed planets in the form of dust, meteorites, and large
impactors. This feed stock material is then available to participate in
additional planetary chemical processing and to play a role in the
origin of life. Figure courtesy of Jason Dworkin.
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meteorites,126 was used as a base-pairing substitute for guanine,
which is not efficiently formed from ice photochemistry and
has not been identified in meteorites to date.609−612 These
examples show that early proto-life had a variety of building
blocks to choose from the inventory of organics that were
delivered. These, mixed with additional compounds formed
indigenously, provided early life with a host of materials for
possible use.
Another family of molecules that are known to form in

laboratory ice photochemistry experiments and present in
primitive meteorites and may have played a critical role for the
emergence of life is the amphiphiles409−411 (see section
2.3.4.4). Indeed, these compounds spontaneously self-assemble
into vesicles when they are put in a solvent. These vesicles
were shown to possess an interior that is separated from the
outside environment and able to encapsulate other molecules
via successive wetting and drying cycles.409 Such a mechanism
of incorporation of compounds has been proposed as a
mechanism via which primitive protocells could have captured
impermeant molecules in prebiotic environments,511 and thus,
have significantly increased the probability for molecules to
react and build more complex structures while being protected
from the outside environment. Indeed, encapsulated molecules
could react under chemical conditions (e.g., pH, temperature,
salinity) that are different from outside and optimized for given
reactions. The presence of amphiphilic molecules in the
organic inventory of compounds that were delivered to the
primitive Earth may have thus resulted in the formation of
vesicles, playing the role of the first protocells in which the first
biochemical reactions could occur.509

3.3. Life: A Universal Process?

Astronomical observations of dense molecular clouds and
protoplanetary disks in our Galaxy as well as of other galaxies
clearly show that these objects are made of similar materials. In
particular, gases and ices condensed on cold grains are
observed everywhere with similar compositions.4,10,33,310,613

These observations therefore tend to highlight that the same
materials are used and processed to make new stars and planets
in the Universe. The processing of ices by energetic photons

and/or particles, and the resulting formation of complex
organic molecules thus seem to be a universal process that
should be ongoing wherever dense clouds and protoplanetary
disks exist and lead to the formation of a wide variety of
organic compounds, some of which are of astrobiological
interest. A fraction of these materials survives the physical and
chemical conditions of the protosolar nebula stage and end up
being incorporated into small objects such as asteroids and
comets. This implies that newly formed planetary systems
likely possess an inventory of complex prebiotic organics that
can, as discussed in section 2.4.5, be delivered to and seed
newly formed planets, as was the case for the primitive
Earth522−525 (Figure 23).
Of course, the conditions on the host planets (temperature,

luminosity received from the star, stability of the star, presence
of an atmosphere, composition of the atmosphere, presence of
water oceans or other stable liquids, frequency of meteor
impacts, etc.) have a fundamental impact on whether life can
or will emerge, even if a given planet has been abundantly
seeded with many of the ingredients necessary for life. Some
planets in the Universe may have met the right conditions to
get life started at some point in their history, but life could not
survive for some or many reasons. This applies to all kinds of
life, and not only life as we know on Earth, as the variety and
abundance of organics formed via prebiotic astrochemical
processes and incorporated into planetary systems are large,
and newly formed planetary systems are diverse, possibly
leading to the emergence of life forms based on different basic
building blocks.
Insofar as astrochemistry may play an important role in the

formation and delivery of the organic materials necessary for
life to the surfaces of planets, and the delivery of these
materials could play a significant role in the emergence and
early evolution of life, this suggests that life may be relatively
common in the Universe. Whether life on other planets is
based on similar compounds as those found in terrestrial life or
is based on different building blocks will likely depend more on
the different physical and chemical conditions on the planets in
question than on the materials delivered to them.

Figure 23. Schematic showing the formation of planetary systems from the condensation of a dense cloud, the bombardment of the forming planets
by meteorites and the delivery of organics to these planets including the early Earth, and the plausible role of these organics in the emergence of life.
Adapted with permission from ref 26. Copyright 1999 Springer Nature.
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4. CONCLUSIONS
Chemistry in space takes place under an extremely wide variety
of environments and environmental conditions and proceeds
via a multitude of chemical processes that include gas-phase
reactions, gas−grain surface reactions, and solid-state reactions
mediated by ions and radicals generated by ionizing radiation.
These processes yield a wide range of chemical products, some
of which are not stable under normal terrestrial conditions.
The chemical processes that occur in dense interstellar

molecular clouds and protostellar disks are of particular
interest because they support rich and varied chemistries and
because materials made and altered in these environments can
ultimately be delivered to the surfaces of planets. Because H,
C, O, and N are the most common reactive elements in space,
it is not surprising that many of these materials are organic in
nature. Indeed, some of the products are of clear astro-
biological interest and they may play key roles in the origin of
life on planets. The chemical processes are universal in nature
and should occur in these environments wherever they are
found. Thus, abiotically produced organic materials should be
widely distributed and routinely delivered to new planetary
systems. Insofar as they may play key roles in the origin of life,
this suggests life may be relatively common where local
conditions are favorable.
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(174) Gaĺvez, Ó.; Mate,́ B.; Herrero, V. J.; Escribano, R.
Spectroscopic effects in CH4/H2O ices. Astrophys. J. 2009, 703,
2101−2107.
(175) White, D. W.; Gerakines, P. A.; Cook, A. M.; Whittet, D. C. B.
Laboratory spectra of the CO2 bending-mode feature in interstellar ice
analogues subject to thermal processing. Astrophys. J., Suppl. Ser. 2009,
180, 182−191.
(176) Knez, C.; Moore, M. H.; Ferrante, R. F.; Hudson, R. L.
Laboratory IR studies and astrophysical implications of C2H2-
containing binary ices. Astrophys. J. 2012, 748, 95.
(177) White, D. W.; Mastrapa, R. M. E.; Sandford, S. A. Laboratory
spectra of CO2 vibrational modes in planetary ice analogs. Icarus
2012, 221, 1032−1042.
(178) Hudson, R. L.; Ferrante, R. F.; Moore, M. H. Infrared spectra
and optical constants of astronomical ices: I. Amorphous and
crystalline acetylene. Icarus 2014, 228, 276−287.
(179) Hudson, R. L.; Gerakines, P. A.; Moore, M. H. Infrared
spectra and optical constants of astronomical ices: II. Ethane and
ethylene. Icarus 2014, 243, 148−157.
(180) Gerakines, P. A.; Hudson, R. L. Infrared spectra and optical
constants of elusive amorphous methane. Astrophys. J., Lett. 2015, 805,
L20.
(181) Müller, B.; Giuliano, B. M.; Bizzocchi, L.; Vasyunin, A. I.;
Caselli, P. O2 signature in thin and thick O2-H2O ices. Astron.
Astrophys. 2018, 620, A46.
(182) Browell, E. V.; Anderson, R. C. Ultraviolet optical constant of
water and ammonia ices. J. Opt. Soc. Am. 1975, 65, 919−926.
(183) Hapke, B.; Wells, E.; Wagner, J.; Partlow, W. Far-UV, visible,
and near-IR reflectance spectra of frosts of H2O, CO2, NH3 and SO2.
Icarus 1981, 47, 361−367.
(184) Sack, N. J.; Boring, J. W.; Johnson, R. E.; Baragiola, R. A.; Shi,
M. Alteration of the UV-visible reflectance spectra of H2O ice by ion
bombardment. J. Geophys. Res. 1991, 96, 17535−17539.
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(186) Cruz-Díaz, G. A.; Muñoz Caro, G. M.; Chen, Y.-J.; Yih, T.-S.
Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption
cross-sections of nonpolar ice molecules. Astron. Astrophys. 2014, 562,
A120.
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(204) Cooke, I. R.; Öberg, K. I.; Fayolle, E. C.; Peeler, Z.; Bergner, J.
B. CO diffusion and desorption kinetics in CO2 ices. Astrophys. J.
2018, 852, 75.
(205) Behmard, A.; Fayolle, E. C.; Graninger, D. M.; Bergner, J. B.;
Martín-Domeńech, R.; Maksyutenko, P.; Rajappan, M.; Öberg, K. I.
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Pestellini, C.; Jimeńez-Escobar, A.; Juang, K.-J.; Yih, T.-S. Soft X-ray
irradiation of methanol ice: Formation of products as a function of
photon energy. Astrophys. J. 2013, 778, 162.
(260) Pilling, S.; Bergantini, A. The effect of broadband soft X-rays
in SO2-containing ices: Implications on the photochemistry of ices
toward young stellar objects. Astrophys. J. 2015, 811, 151.
(261) Ciaravella, A.; Chen, Y.-J.; Cecchi-Pestellini, C.; Jimeńez-
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J.-H. Indirect ultraviolet photodesorption from CO:N2 binary ices 
An efficient grain-gas process. Astrophys. J. 2013, 779, 120.
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(602) Schöning, K. U.; Scholz, P.; Guntha, S.; Wu, X.;
Krishnamurthy, R.; Eschenmoser, A. Chemical etiology of nucleic
acid structure: The α-threofuranosyl-(3′→2′) oligonucleotide system.
Science 2000, 290, 1347−1351.
(603) Yu, H.; Zhang, S.; Chaput, J. C. Darwinian evolution of an
alternative genetic system provides support for TNA as an RNA
progenitor. Nat. Chem. 2012, 4, 183−187.
(604) Seita, T.; Yamauchi, K.; Kinoshita, M.; Imoto, M.
Condensation polymerization of nucleotide analogues. Makromol.
Chem. 1972, 154, 255−261.
(605) Zhang, L.; Peritz, A.; Meggers, E. A simple glycol nucleic acid.
J. Am. Chem. Soc. 2005, 127, 4174−4175.
(606) Tsai, C.-H.; Chen, J.; Szostak, J. W. Enzymatic synthesis of
DNA on glycerol nucleic acid templates without stable duplex
formation between product and template. Proc. Natl. Acad. Sci. U. S. A.
2007, 104, 14598−14603.
(607) Cleaves, H. J., II; Butch, C.; Burger, P. B.; Goodwin, J.;
Meringer, M. One among millions: The chemical space of nucleic
acid-like molecules. J. Chem. Inf. Model. 2019, 59, 4266−4277.
(608) Stoks, P. G.; Schwartz, A. W. Nitrogen-heterocyclic
compounds in meteorites: significance and mechanisms of formation.
Geochim. Cosmochim. Acta 1981, 45, 563−569.
(609) Crick, F. H. C. The origin of genetic code. J. Mol. Biol. 1968,
38, 367−379.
(610) Nishikura, K. Functions and regulation of RNA editing by
ADAR deaminases. Annu. Rev. Biochem. 2010, 79, 321−349.
(611) Rios, A. C.; Tor, Y. On the origin of the canonical
nucleobases: an assessment of selection pressures across chemical
and early biological evolution. Isr. J. Chem. 2013, 53, 469−483.
(612) Cafferty, B. J.; Hud, N. V. Was a pyrimidine-pyrimidine base
pair the ancestor of Watson-Crick base pairs? Insights from a
systematic approach to the origin of RNA. Isr. J. Chem. 2015, 55,
891−905.
(613) Wooden, D. H.; Charnley, S. B.; Ehrenfreund, P. Composition
and evolution of interstellar clouds. In Comets II; Festou, M. C.,
Keller, H. U., Weaver, H. A., Eds.; University of Arizona Press:
Tucson, 2004; pp 33−66.
(614) McCall, B. J. Optical and Infrared Observations of Diffuse
Clouds. Astrochemistry: Recent Successes and Current Challenges,
Proceedings of the IAU Symposium; Lis, D. C., Blake, A., Herbst, E.,
Eds.; International Astronomical Union, 2006; no. 231.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.9b00560
Chem. Rev. 2020, 120, 4616−4659

4659

https://dx.doi.org/10.1038/ncomms9567
https://dx.doi.org/10.1038/ncomms9567
https://dx.doi.org/10.3847/0004-637X/832/1/55
https://dx.doi.org/10.3847/0004-637X/832/1/55
https://dx.doi.org/10.1089/ast.2008.0819
https://dx.doi.org/10.1089/ast.2008.0819
https://dx.doi.org/10.1039/b103775g
https://dx.doi.org/10.1039/b103775g
https://dx.doi.org/10.1126/science.1962210
https://dx.doi.org/10.1126/science.1962210
https://dx.doi.org/10.1021/bc00025a001
https://dx.doi.org/10.1021/bc00025a001
https://dx.doi.org/10.1126/science.290.5495.1347
https://dx.doi.org/10.1126/science.290.5495.1347
https://dx.doi.org/10.1038/nchem.1241
https://dx.doi.org/10.1038/nchem.1241
https://dx.doi.org/10.1038/nchem.1241
https://dx.doi.org/10.1002/macp.1972.021540123
https://dx.doi.org/10.1021/ja042564z
https://dx.doi.org/10.1073/pnas.0704211104
https://dx.doi.org/10.1073/pnas.0704211104
https://dx.doi.org/10.1073/pnas.0704211104
https://dx.doi.org/10.1021/acs.jcim.9b00632
https://dx.doi.org/10.1021/acs.jcim.9b00632
https://dx.doi.org/10.1016/0016-7037(81)90189-7
https://dx.doi.org/10.1016/0016-7037(81)90189-7
https://dx.doi.org/10.1016/0022-2836(68)90392-6
https://dx.doi.org/10.1146/annurev-biochem-060208-105251
https://dx.doi.org/10.1146/annurev-biochem-060208-105251
https://dx.doi.org/10.1002/ijch.201300009
https://dx.doi.org/10.1002/ijch.201300009
https://dx.doi.org/10.1002/ijch.201300009
https://dx.doi.org/10.1002/ijch.201400206
https://dx.doi.org/10.1002/ijch.201400206
https://dx.doi.org/10.1002/ijch.201400206
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.9b00560?ref=pdf

