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Prebiotic Significance of Extraterrestrial Ice Photochemistry:
Detection of Hydantoin in Organic Residues
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Abstract

The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long
been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life.
Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice ana-
logues containing H2O, CH3OH, and NH3 led to the production of several molecules of prebiotic interest. These
were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice.
In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an
important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under
extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble
part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments
reported recently, points to the potential importance of the photochemistry of interstellar ‘‘dirty’’ ices in the
formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of
primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to
lead to some form of primitive biomolecular activity. Key Words: Interstellar molecules—Ice—UV radiation—
Organic matter—Prebiotic chemistry. Astrobiology 11, 847–854.

1. Introduction

Ices are widely observed in the interstellar medium (Gibb
et al., 2004; Dartois, 2005), mostly in dense molecular clouds

and protostars from which stars, disks, comets, asteroids, and
eventually planetary systems form. As a consequence, it is not
surprising to observe strong similarities between the chemical
composition and relative abundances of interstellar and
cometary ices (Neslušan, 2002; Crovisier, 2007), because cold
and non-evolved cometary ices are probably, at least partially,
leftovers from the initial interstellar solid-state molecular
species present in dense clouds (Gibb et al., 2000).

Laboratory experiments in which the chemical evolution
of bulk ices is simulated with techniques of matrix isolation
spectroscopy (d’Hendecourt and Dartois, 2001) have proven
to be very useful for the interpretation of astronomical IR
data related to the composition and structure of astrophysi-
cally relevant ices. The global composition of these ices has
been well established and may currently serve as a template
for further laboratory simulations.

Extraterrestrial ices are subjected to various energetic
processes. Among them, UV photochemistry leads to the
formation of new, more complex species that stem from the
recombination of the radicals produced by energetic photons
(d’Hendecourt et al., 1982). Solid-state molecules, such as
carbon dioxide (d’Hendecourt and Jourdain de Muizon,
1989), formaldehyde (Schutte et al., 1996), formamide and
urea (Raunier et al., 2004), and ammonium cyanate (Schutte
and Khanna, 2003), which are routinely produced in UV ir-
radiation experiments, have indeed been detected in space.
In dense clouds, the amount of molecular materials con-
densed on the surface of grains is significantly larger than
that in the gas phase because volatile compounds condense
easily on grains at these low temperatures. Solid grains may
therefore be considered as small chemical reactors that will
enhance the complexity of organic materials, owing to the
high density they locally offer to potential reactants and the
shielding they provide to newly formed species. Some rela-
tive complexity is indeed observed principally in the gas
phase of hot molecular cores (Bottinelli et al., 2007) because
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complex molecules are extremely difficult to observe in the
solid phase. However, chemical models show that complex
molecules in the gas phase mostly come from the sublima-
tion of the icy mantles where they are formed (Garrod et al.,
2008).

In the laboratory, simulations of photo- and thermo-
chemistry always lead to the formation of a semi-refractory
organic residue after warming up the sample to room tem-
perature (Agarwal et al., 1985). This residue presumably also
remains on interstellar grains when they are heated to such
temperatures, in particular in hot cores (van der Tak, 2004).
Laboratory residues exhibit an IR spectrum that displays
many interesting features assigned to chemical functional
groups such as alcohols, carboxylic acids, amines, amides,
esters, and aliphatic chains (Muñoz Caro and Schutte, 2003;
Nuevo et al., 2006), and are almost totally soluble in water
because of their high degree of chemical functionalization.
Extraction and acid hydrolysis of these laboratory residues
have produced a variety of amino acids as well as other
complex organic molecules (Bernstein et al., 2002; Muñoz
Caro et al., 2002; Nuevo et al., 2008). Although the organic
residue’s spectrum has not been directly observed in astro-
nomical spectra because of its weak and congested IR sig-
natures masked by those due to ices, these residues may well
be comparable with extraterrestrial matter and may thus
serve as templates for further analytical investigations.

The presence of amino acids in meteorites has long been
known (see, e.g., Kvenvolden et al., 1970; Cronin and Piz-
zarello, 1983; Martins et al., 2007), and extraterrestrial glycine
has been recently detected in the aerogel cell frame of the
NASA Stardust spacecraft, which returned samples from
Comet Wild 2 (Elsila et al., 2009). In addition, the pyrimidine
uracil and a few purines, which are the informal units of
RNA and DNA, have also been detected in meteorites (see,
e.g., Folsome et al., 1971; van der Velden and Schwartz, 1977;
Stoks and Schwartz, 1979; Martins et al., 2008). The presence
of such compounds in meteorites provides strong support
for the original idea of Oró (1961), which is that, very early in
its history, Earth was seeded with organics, including pre-
biotic materials, that were delivered by comets and asteroids.

In this paper, we present experiments that extend recent
results from Nuevo et al. (2010), who detected urea, glycolic
acid, and glycerol in similar organic residues produced from
the UV irradiation of astrophysical ice analogues containing
H2O, CH3OH, and NH3. As reported by Ware (1950), the
condensation of urea and glycolic acid leads to the formation
of hydantoin (C3H4N2O2), an important intermediate mole-
cule in the production of oligopeptides in the schemes pro-
posed by Commeyras et al. (2004) and Danger et al. (2006).
We thus decided to search specifically for this molecule in
our laboratory residues, which were speculatively identified
by Bernstein et al. (2002), and discuss the astrobiological
implications of its potential detection in our residues.

2. Experimental protocol

2.1. Ultraviolet irradiation of the ice analogues

The experimental setup (vacuum system, cryostat, and
Fourier transform infrared spectrometer) used to simulate
the ices is conventional and described in detail in the litera-
ture (see, e.g., Nuevo et al., 2007, 2010). Two ice mixtures,
namely, H2O:CH3OH:NH3 (2:1:1) and CH3OH:NH3 (1:1),

were chosen to determine the importance of H2O in the
formation of organics. Moreover, the first mixture is assumed
to be a good compromise between a representative molecu-
lar composition of interstellar ices and experimental con-
straints that produce enough organic matter to allow a
significant analysis. The relative abundances of CH3OH and
NH3 are thus slightly overestimated regarding the interstel-
lar abundances (Dartois, 2005). H2O (water, liquid) was pu-
rified by using a Millipore Direct Q5 system, CH3OH
(methanol, liquid) was purchased from Aldrich (99.9% pu-
rity), and NH3 (ammonia, gas) from Messer (99.98% purity).
Mixtures were prepared under vacuum in a stainless steel
line, which was evacuated to a pressure of a few 10 - 6 mbar
by a turbomolecular pump prior to the introduction of gases.
The ratios between the components were determined by
their partial pressures in the gas line, measured by an ab-
solute pressure gauge (Baratron). Mixtures were then trans-
ferred to a glass bottle, which was subsequently connected to
the vacuum system. They were deposited onto a cold (80 K)
substrate (MgF2 window) and simultaneously irradiated by
UV photons with a microwave-powered H2 lamp for about
48 h. After irradiation, samples were warmed to room tem-
perature, and the residues covering the substrate were
carefully conserved in vacuum prior to analysis with a gas
chromatograph–mass spectrometer (GC-MS).

Additionally, a mixture in which methanol, the only
source of carbon, was isotopically labeled with 13C was
prepared and irradiated by UV under the same experimental
conditions as the other samples and controls. The main
purpose for studying the organic residue that forms from the
irradiation of such a mixture was to verify that organic
compounds that formed during our experiments originated
only from the starting ice mixture and not from any other
contaminating source of carbon.

2.2. Gas chromatography–mass spectrometry
analyses of the organic residues

The residues were first extracted from their substrates
with 100 lL of pure water. For each sample, a tenth of the
solution was dried by speed vacuum and then derivatized by
silylation with 30 lL of MTBSTFA (N-tert-butyldimethylsilyl-
N-methyltrifluoroacetamide) containing 1% of TBDMSCl
(tert-butyldimethylchlorosilane) (Fluka) and 70 lL of aceto-
nitrile (Merck, 99.8% purity) (see reaction in Fig. 1). The
derivatized solutions were shaken by sonication for 15 min
and then placed in an oven at 60�C for 1 h. Finally, 1 lL of
each solution was injected into an Agilent 6890 gas chro-
matograph equipped with a CP-Sil 19 CB fused-silica capil-
lary column from Varian (length 30 m, i.d. 0.25 mm, film
thickness 0.2 lm) coupled with an Agilent 5973 mass spec-
trometer as the detector (electron ionization at 70 eV). GC-MS
chromatogram acquisition and data processing were per-
formed with the Agilent MSD ChemStation software. He-
lium was used as the carrier gas (inlet pressure 178 kPa), and
splitless injection mode was used. The injector temperature
was set to 250�C, the mass spectrometer source to 150�C, and
the mass spectrometer quadrupole to 230�C. Finally, the
oven temperature was set to 125�C for 5 min and then pro-
grammed to reach 250�C at a rate of 5�C min - 1.

Identification of hydantoin was performed by comparing
the retention times of peaks in the sample chromatograms
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and their mass spectra with those of a standard of hydantoin
(Sigma-Aldrich, 99% purity) derivatized following the same
protocol as for the samples.

3. Results: Identification of Hydantoin

Urea, glycolic acid, glycerol, and hydantoin were detected
in all synthesized samples. Since the detection and astro-
biological implications of urea, glycolic acid, and glycerol in
similar experiments have already been discussed in detail in
Nuevo et al. (2010), here we focus our attention on the de-
tection of hydantoin.

The hydantoin tert-butyldimethylsilyl derivative is char-
acterized by a chromatographic peak eluting at a retention
time of about 18.25 min (Fig. 2) and a mass spectrum in
which the most intense fragment has a mass-to-charge ratio
(m/z) of 271 amu, corresponding to the molecular ion (328
amu) that has lost a tert-butyl group (57 amu) and is referred
to as the [M–57] + fragment (Casal et al., 2004; Schummer
et al., 2009). Each sample was analyzed by mass spectrometry
in both the total ion chromatogram (TIC) and selected ion
monitoring (SIM) acquisition modes. In a TIC, the y axis
corresponds to the sum of all detected ion currents for each
scan, while the SIM mode is a data acquisition technique in

FIG. 1. Reaction of hydantoin silylation with MTBSTFA with 1% TBDMSCl (adapted from Schummer et al., 2009). Color
graphics can be found online at www.liebertonline.com/ast

FIG. 2. Selected ion monitoring chromatograms for (a) ions of m/z = 271 amu for a control sample, corresponding to a blank
window (ice mixture deposited) that was not irradiated; (b) ions of m/z = 271 amu for the hydantoin standard (5 lL at 10 - 4 g
L - 1); (c) ions of m/z = 271 amu for the organic residue produced from the H2O:CH3OH:NH3 = 2:1:1 mixture; (d) ions of m/
z = 271 amu for the organic residue produced from the CH3OH:NH3 = 1:1 mixture; (e) ions of m/z = 274 amu for the same
control sample as (a); and (f) ions of m/z = 274 amu for the organic residue produced from the H2O:13CH3OH:NH3 = 2:1:1
mixture. Chromatograms have arbitrarily been offset in intensity for clarity.

DETECTION OF HYDANTOIN IN ORGANIC RESIDUES 849

http://www.liebertonline.com/action/showImage?doi=10.1089/ast.2011.0677&iName=master.img-000.jpg&w=297&h=137
http://www.liebertonline.com/action/showImage?doi=10.1089/ast.2011.0677&iName=master.img-001.jpg&w=336&h=261


which only the currents of a small range of selected ion
fragments are monitored in order to maximize the sensitiv-
ity. Hydantoin is produced in small quantities in our resi-
dues, which makes it difficult to be detected in the TIC mode.
For this reason, we concentrated on the SIM mode for m/
z = 271 (for regular 12C samples) and m/z = 274 amu (for the
13C sample).

Figure 2 shows the SIM chromatograms of a control
sample, which corresponds to a blank window (ice mixture
deposited) that was not irradiated, for ions of m/z = 271 amu
(trace a), the hydantoin standard (trace b), the organic
residue produced from the H2O:CH3OH:NH3 = 2:1:1 mix-
ture (trace c), the organic residue produced from the
CH3OH:NH3 = 1:1 mixture (trace d), a control sample (the
same as trace a) for ions of m/z = 274 amu (trace e), and
the organic residue produced from the H2O:13CH3OH:NH3 =
2:1:1 mixture (trace f). It can clearly be seen that the chro-
matograms of the three organic residues display a peak
eluting at about 18.25 min that matches very well the peak
of the hydantoin standard. This detection of hydantoin in
our residues is confirmed by comparing the mass spectra
of all these chromatographic peaks except the one of the 13C
sample (Fig. 3), in which both the most intense peak at
m/z = 271 amu, corresponding to [M–57] + , and a peak at
m/z = 313 amu, due to the molecular ion that has lost a methyl
group, [M–15] + , clearly appear. The peaks at m/z = 147 and

207 amu are due to fragments of the silylation agent and
noise, respectively, and are thus independent of the deriva-
tized compounds (Vouros, 1980; Nuevo et al., 2010). Also in
Fig. 2, the chromatograms obtained for the control sample do
not show any peak for hydantoin, whereas the chromato-
gram of the residue produced from the 13C starting ice
mixture clearly shows a peak at about 18.25 min assigned to
hydantoin. The mass spectrum of this last peak is not pre-
sented here because of a coelution of an unknown species (a
fragment at m/z = 279 amu), and there is thus no additional
information than that presented in Fig. 2.

Several remarks must be made regarding the detection of
hydantoin in our samples. First of all, we chose not to record
m/z smaller than 130 amu since no other characteristic peaks
are present in this range. Thus, the comparison between the
mass spectra is only made in the 130–350 amu range, in
which only two of the characteristic fragments of the hy-
dantoin derivative are displayed at m/z = 271 and 313 amu.
Furthermore, we verified that hydantoin was actually pro-
duced during photo-irradiation of the ices at low tempera-
ture and not formed at room temperature after extraction of
the residues with H2O or during the derivatization process,
because residues contain urea and glycolic acid, which are
known to react to form hydantoin (Ware, 1950). This was
checked by derivatizing a concentrated mixture composed of
urea and glycolic acid following the same protocol as for the

FIG. 3. Mass spectra of the peaks eluting at about 18.25 min
assigned to hydantoin for (a) the hydantoin standard, (b) the
organic residue produced from the H2O:CH3OH:NH3 = 2:1:1
mixture, and (c) the organic residue produced from the
CH3OH:NH3 = 1:1 mixture. Masses 271 amu [M–57] + and
313 amu [M–15] + are characteristic of derivatized hydantoin,
while m/z = 147 and 207 amu are due to fragments of the
derivatization agent (Vouros, 1980; Nuevo et al., 2010) and
noise, respectively. a.u., arbitrary units.
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hydantoin standard and the residues (see Section 2.2) and by
injecting it into the GC-MS. No hydantoin was detected in
this mixture. Finally, note that in our study hydantoin was
recovered from residues that had not been hydrolyzed in an
acidic medium, unlike residues in which amino acids have
been detected, so that hydantoin forms and remains in a
‘‘free’’ form in the samples.

The absolute amounts of hydantoin measured in these
residues are small, less than 1 lg. Compared with the
quantities of other molecules detected in residues produced
under similar experimental conditions, these abundances
correspond to less than 1% of the amount measured for
hexamethylenetetramine, a molecule whose presence in the
residues accounts for around 50% in mass as accurately de-
rived from the IR spectrum of typical residues (Bernstein
et al., 1995; de Marcellus, 2010). An interesting result is that
the quantity of hydantoin measured in the H2O:CH3OH:NH3

sample is significantly higher than that measured in the
residue formed from the mixture that did not contain H2O.
Moreover, the total quantities of CH3OH and NH3 deposited
are twice lower in the H2O:CH3OH:NH3 sample, which re-
sults in a relative quantity of hydantoin about 4 times higher
in this last sample than in the one without water. Although
such a result should be repeated to be accurately quantified,
it suggests that water ice behaves as a protective and active
matrix in which the formation of hydantoin and other or-
ganics is catalyzed and/or favored. This property of H2O ice
has already been observed in previous laboratory simula-
tions and quantum calculations for the study of the forma-
tion of uracil from the UV irradiation of H2O:pyrimidine
mixtures, in which the presence of water was essential in the
final, stable deprotonation of the intermediate compounds
that led to the formation of the final photoproducts (Bera
et al., 2010). However, in the present study, we focused on
the detection of hydantoin in organic residues and its as-
trobiological implications (see Section 4) but did not study its
mechanism of formation. The quantities of 13C-hydantoin
shown in Fig. 2 cannot be directly compared with those
for 12C because these chromatograms do not correspond to
the same injected quantities of sample. Note that the 13C-
hydantoin experiment is reported only to show that the de-
tection of hydantoin in our initial samples was not the result
of any sort of contamination.

4. Astrobiological Implications

Astronomical observations and laboratory experiments
simulating energetic processes of ices in astrophysical envi-
ronments have shown that ice photochemistry is an efficient
process that always leads, after evaporation of the ices, to the
formation of a semi-refractory residue that consists mainly of
complex organics (Bernstein et al., 1995; Muñoz Caro and
Schutte, 2003). Although astrophysical ices are also subjected
to other energetic radiation such as cosmic rays, we chose to
focus our study on the effect of UV photons because they are
present in interstellar clouds regardless of the UV extinction
(Prasad and Tarafdar, 1983; Shen et al., 2004). Furthermore,
direct comparison between astronomical data and laboratory
simulations, in which a suite of new molecules are formed
and can be searched for in astrophysical environments
(d’Hendecourt et al., 1996), clearly indicates that the experi-
mental approach is a powerful and necessary step to study

the evolution of ices and organic matter in astrophysical
environments.

Recent ice photochemistry experiments showed that UV
circularly polarized light may be the mechanism at the origin of
the enantiomeric excesses measured in some meteoritic amino
acids (de Marcellus et al., 2011), which supports the scenario
that suggests part of the soluble organic matter from primitive
chondrites is the result of photochemical processes of inter-
stellar/circumstellar ices. Thus, the detection of hydantoin
among a large suite of organic molecules of potential prebiotic
interest in laboratory organic residues constitutes an additional
favorable point of comparison between laboratory experiments
and the organic composition of extraterrestrial matter. Indeed,
hydantoin and its derivatives have been detected in Murchison
and Yamato-791198 meteorites (Cooper and Cronin, 1995;
Shimoyama and Ogasawara, 2002). Such nondirected experi-
ments simulate extraterrestrial conditions in the sense that the
evolution of the laboratory ices follows that of a natural as-
trophysical ice. The organic composition of the so-formed res-
idue constitutes a plausible match with extraterrestrial matter,
in particular the meteoritic soluble organic matter for which
more precise data are constantly provided.

As with amino acids, also present in hydrolyzed organic
residues (Bernstein et al., 2002; Muñoz Caro et al., 2002;
Nuevo et al., 2008), the presence of hydantoin has a strong
astrobiological implication. Indeed, from a prebiotic point of
view, hydantoin plays an important role as an intermediate
compound in the formation of poly- and oligopeptides, via
selective catalytic processes in an aqueous medium (Fig. 4).
Considering a scenario in which prebiotic compounds have
been delivered to primitive oceans by exogenous sources
(see, e.g., Oró, 1961), one can reasonably assume that mole-
cules such as hydantoin, urea, and a-amino acids seeded the
oceans of primitive Earth. Such a scenario was already
strongly supported by the detection of a large number of
amino acids (Kvenvolden et al., 1970; Cronin and Pizzarello,
1983; Martins et al., 2007) and a small number of nucleobases
(Folsome et al., 1971; van der Velden and Schwartz, 1977;
Martins et al., 2008) in meteorites and in organic residues
produced in UV irradiation experiments comparable to those
described in the present study (Bernstein et al., 2002; Muñoz
Caro et al., 2002; Nuevo et al., 2008, 2009).

Hydrolysis of hydantoin could then easily form carbamoyl
amino acids (CAAs). Such CAAs could also form by addition
of isocyanic acid (HNCO) to a-amino acids (Taillades et al.,
2001). In this reaction, isocyanic acid would be a product of
decomposition of urea, also detected in our residues and in
previous studies (Nuevo et al., 2010), together with NH3,
which must take place in an acidic medium such as terres-
trial primitive oceans (Mojzsis et al., 1999). Once CAAs are
formed, they may lead to the formation of N-carboxyanhydride
amino acids (NCAs) via two different and efficient path-
ways. The first one takes place in a mildly acidic aqueous
phase and involves the loss of NH3 to form isocyanate de-
rivatives of amino acids, which, by cyclization, will lead to
NCAs (Danger et al., 2006). The second pathway requires the
nitrosation of the urea group of the CAAs in an oxidizing
atmosphere, followed by an identical cyclization (Com-
meyras et al., 2004). Finally, NCAs, activated derivatives of
amino acids, will polymerize into poly- and oligopeptides
due to the condensation of amino acids (Fig. 4). Repeated
amino acid activation and elongation leads to the formation
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of longer peptides. Therefore, this scenario is a possible
pathway for the formation of primitive proteins in a prebiotic
chemical environment such as early Earth.

5. Conclusions

Ultraviolet photo-irradiation of representative interstellar
ice analogues containing CH3OH and NH3 with or without
the presence of H2O has been shown to lead to the formation
of a large suite of organic molecules, including the hetero-
cyclic compound hydantoin. Although the quantities mea-
sured for this compound by gas chromatography–mass
spectrometry are small compared with the full inventory of
compounds formed during such experiments, the detection
of hydantoin is of major prebiotic interest because it plays an
important role as an intermediate for the formation of poly-
and oligopeptides, according to the schemes proposed by
Commeyras et al. (2004) and Danger et al. (2006), and may
thus be a precursor of primitive proteins. Moreover, this
molecule is also detected in primitive chondrites such as
Murchison so that its presence in organic residues produced
in the laboratory, together with other organic compounds
such as amino acids and nucleic acid bases, supports the
astrophysical and prebiotic relevance of interstellar ice pho-
tochemistry and the scenario in which the potential bio-
molecules that triggered the emergence of life were of
extraterrestrial origin.
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J.-H., and Nahon, L. (2007) Enantiomeric separation of com-
plex organic molecules produced from irradiation of inter-
stellar/circumstellar ice analogs. Adv Space Res 39:400–404.

Nuevo, M., Auger, G., Blanot, D., and d’Hendecourt, L. (2008) A
detailed study of the amino acids produced from the vacuum
UV irradiation of interstellar ice analogs. Orig Life Evol Biosph
38:37–56.

Nuevo, M., Milam, S.N., Sandford, S.A., Elsila, J.E., and Dworkin,
J.P. (2009) Formation of uracil from the ultraviolet photo-irra-
diation of pyrimidine in pure H2O ices. Astrobiology 9:683–695.
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